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Nonlinear relaxation field in charged systems under high electric fields

K. Morawetz
LPC-ISMRA, Boulevard Marechal Juin, 14050 Caen Cedex 5, France

and GANIL, Boulevard Becquerel, 14076 Caen Cedex 5, France
~Received 22 May 2000!

The influence of an external electric field on the current in charged systems is investigated. The results
beyond linear response from the classical hierarchy of density matrices are compared with the results from
quantum kinetic theory. It is found that even an infinitesimal friction with the background changes the results
in a noncontinuous way. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear
response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated
analytically and the nonlinear relaxation field is calculated. The classical linear response result known as the
Debye-Onsager relaxation effect is obtained only if asymmetric screening is assumed. When considering the
kinetic equation of one species, the other species have to be screened dynamically while the screening with the
same species itself has to be performed statically. Other different approximations are discussed and compared.

PACS number~s!: 05.30.2d, 05.20.Dd, 05.60.2k, 72.20.Ht
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I. INTRODUCTION

High field transport has become a topic of current inter
in various fields of physics. In semiconductors nonline
transport effects are accessible due to femtosecond
pulses and shrink devices@1#. In plasma physics these fiel
effects can be studied within such short pulse periods@2#.
One observable of interest is the current or the electr
conductivity which gives access to properties of dense n
ideal plasmas@3#. In high energy physics transport in stron
electric fields is of interest due to pair creation@4#. In order
to describe these field effects one can start conveniently f
kinetic theory. Within this approach the crucial problem is
derive appropriate kinetic equations that include field effe
beyond linear response.

At low strength of the external electric field one expe
the linear response regime to be valid. Then the contribu
of field effects to the conductivity can be condensed into
Debye-Onsager relaxation effect@5–11#, which was first de-
rived within the theory of electrolytes@12–16#. Debye and
Hückel gave a limiting law of electrical conductivity@12#,
which states that the external electric fieldE on a single
chargeZ51 is diminished in an electrolyte solution by th
amountE(11dE/E), or

Eeff5ES 12
ke2

6T D , ~1!

where e is the elementary charge,E the electric field
strength,T the temperature of the plasma, andk the inverse
screening radius of the screening cloud. This law is int
preted as a deceleration force caused by the defor
screening cloud surrounding the charge. Later it was sho
by Onsager@13# that this result has to be corrected to

Eeff5ES 12
ke2

3~21A2!T
D ~2!
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if the dynamics of ions (Z51) is considered. While the lin-
ear response theory seems to reproduce this Onsager r
@8,9,11#, the kinetic theory seems more to support the Deb
result @10,17,11#. The correct treatment is a matter of ong
ing debate. In this paper we will give the result beyond line
response for the statically and dynamically screened appr
mations. We find that even an infinitesimal disturbance l
friction with the background leads to a noncontinuo
change of the results and reproduces Eq.~2!. This can be
considered as an example of symmetry breaking of the eq
tions. Different approximations of kinetic theory are di
cussed and the one that leads to the closest form to the
drodynamical approximation~Onsager result! is presented.

The kinetic approach describes the time evolution of
one-particle distribution function within an external fieldE
as

]

]t
f 2eZE

]

]k
f 5I @ f ,E#, ~3!

where the field-dependent collision integralI @ f ,E# has to be
provided by different approximations. Integrating this kine
equation over the momentumk, one obtains the balance o
the current. For simplicity we assume that the distributi
function can be parametrized by a displaced local equi
rium function with a field- and time-dependent momentu
f (k,t)5 f 0„k2p(E,t)…, which is related to the currentJ as

J~E,t !5nZe
p~E,t !

m
~4!

if the charge isZe, the densityn, and the massm. The
balance equation for the field- and time-dependent local m
mentump(E,t) follows from Eq.~3! as

]

]t
p2eZnS 11

dE~E,t !

E DE5R~E,t !eZnJ~E,t !, ~5!
6135 ©2000 The American Physical Society
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6136 PRE 62K. MORAWETZ
where the relaxation fielddE(E) as well as the free resistiv
ity R(E) follow from the field-dependent collision integra
The total conductivitysE5J is then given by

s~E!5
11dE~E!/E

R~E!
. ~6!

The free resistivityR has been the subject of intense inve
tigation in the literature@3#. It is known that the Coulomb
divergence for small wave vectors is omitted if screening
included and the divergence at large wave vectors is omi
by the De Broglie wavelength, i.e., by the quantum effec
We will not consider the discussion of the free resistivityR
here but concentrate on the relaxation fielddE. The free
resistivity can be obtained by the same considerations as
be outlined here. We want to point out that the relaxat
field will turn out to be free of long wave divergences in t
classical limit, in contrast to the free resistivityR.

First we recall the hydrodynamical approach starting fr
the classical Bogoliubov-Born-Green-Kirkwood-Yvo
~BBGKY! hierarchy which results in an analytical formu
for the classical relaxation effect beyond linear respo
@18#. This result is then compared with the quantum kine
approach. We give a short rederivation of the field-depend
kinetic equations in the dynamical screened approxima
from the Green’s function technique in Sec. III. Two a
proximations, static screening as well as dynamical scre
ing, are presented. In the fourth section we will derive
field-dependent current analytically. We present both
statically and dynamically screened treatments as analy
results. The classical expression for the statically scree
result @17# is compared with the classical result from th
hydrodynamical approximation. The dynamical result is th
derived analytically also and it is shown that the hydrod
namical result can be approached only for asymme
screening. In Sec. V we briefly discuss the physical limi
tion of field strengths for the local equilibrium assumpti
and the gradient approximation. Section VI summarizes
the Appendix gives the calculation of some involved in
grals appearing during the integration of the Lenard-Bale
equation.

II. APPROACH BY CLASSICAL BBGKY HIERARCHY

The starting point for the classical consideration is
BBGKY hierarchy@19,20#, which reads for the one-particl
distribution functionFa

]Fa

]t
1v

]Fa

]r
1

ea

ma
Ē

]Fa

]v
2SaFa

5(
b

nbeaeb

ma

]

]vE dr 8dv8Fab~r ,r 8,v,v8!
]

]r

1

ur2r 8u
~7!

and for the two-particle distribution functionFab
-

s
d
.

ill
n

e
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nt
n

n-
e
e
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ed

n
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-

d
-
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e

]Fab

]t
1v

]Fab

]r
1v8

]Fab

]r 8
1

ea

ma
Ē

]Fab

]v

1
eb

mb
Ē

]Fab

]v8
2SaFab2SbFab

5eaeb

]

]r

1

ur2r 8u
S 1

ma

]Fab

]v
2

1

mb

]Fab

]v8
D

1(
c

ncecE dr 9dv9S ea

ma

]

]r

1

ur2r 9u
•

]Fabc

]v

1
eb

mb

]

]r 8

1

ur 82r 9u
•

]Fabc

]v8
D ~8!

with the external fieldE. Sa describes a collision integra
with some background which we will specify later. This h
erarchy is truncated, approximating as@20#

Fab5FaFb1gab ,
~9!

Fabc5FaFbFc1Fagbc1Fbgac1Fcgab ,

wheregab(ra ,rb ,va ,vb) is the two-particle correlation func
tion.

Within the local equilibrium approximation we suppose
stationary~for example, a local Maxwellian! distribution for
the velocities in the one- and two-particle distribution fun
tions,

f a~r ,v,t !5na~r ,t !S ma

2pTD 3/2

expF2
ma~v2ua!2

2T G ,
gab~r ,r 8,v,v8,t !5Fab2FaFb

5hab~r ,r 8,t !S mamb

4p2T2D 3/2

3expF2
ma~v2wab!

2

2T
2

mb~v82wba!
2

2T G .
~10!

Here we have introduced the local one-particle density
the local average velocity,

na~r ,t !5E dvFa~r ,v,t !,

~11!

ua5
1

na
E dvvFa~r ,v,t !,

as well as the pair correlation function and the average
velocity,

hab~r ,r 8,t !5E dv dv8gab~r ,r 8,v,v8,t !,

~12!

wab~r ,r 8,t !5
1

hab
E dv dv8vgab~r ,r 8,v,v8,t !.
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Further on, we suppose that the particles interact with so
background ~e.g., neutral species or electrolyte solve!
through collision integralsSa with the following properties:

E dvSaf a50,

E dvvSaf a5
1

bama
raua , ~13!

E dvvSagab~r ,r 8,v,v8,t !5
1

bama
habwab ,

whereba is the mobility of particles of typea. This friction
with the background serves here to couple the two-part
equations and will be considered infinitesimally small at
end. However, as we will demonstrate, this yields a symm
try breaking in the system, which leads to essentially diff
ent results than if this friction is neglected.

Fourier transforming the resulting two equations~9! into
momentum space and assuming a homogeneous de
n(r )5n, we arrive at the coupled equation system

2
ea

T
Ē•~va2ua! f a5

ua

bama
1(

b

4pnbeaeb

T

3E dk

~2p!3

ik•~va2wab!

k2

3 f a~va2wab1ua!hab~k! ~14!

and

ik•~va2vb!gab2@ea~va2wab!1eb~vb2wba!#
Ē

T
gab

52 ieaeb

4p

k2 k•~va2ua2vb1ub! f af b

2 i E dk̄

~2p!3

4peaeb

Tk2 k̄•~va2wab2vb1wba!gab

3~k2 k̄!2(
c

ncE dvc

4p iec

Tk2 @eak•~va2ua!

3 f agcb~k!2ebk•~vb2ub! f bgac~k!#1Sagab1Sbgab

~15!

with

Ē5E2(
b

nbebE drbdvb

]

]rb

1

ura2rbu
Fb . ~16!

By multiplying the above equation system by 1,va ,vb , and
integrating over the velocities we obtain the Onsager eq
tion @13#
e

le
e
-
-

ity

a-

baFThab~k!S 11 i
ea

e
aD1eaFb~2k!G

52bbFThab~k!S 12 i
eb

e
aD1ebFa~k!G ~17!

with

k2Fa~k!54pea1(
c

ncechac~k!,

~18!

k2Fa~2k!54pea1(
c

ncechca~k!

for the two-particle correlation functionhab . Here we use

a5
ek•Ē

k2T
. ~19!

Let us remark here that the friction with background d
scribed by the mobilitiesb couples the two sides of Eq.~17!.
If we had not considered this friction,Si50, we would have
obtained the result that the left and right hand sides of
~17! vanish separately. This leads essentially to different
nal expressions even for infinitely small friction. There is
continuous transition between these two extreme ca
pointing to a symmetry breaking between the two treatme
Let us first discuss the case with background friction.

A. With background friction

The system~17! for electrons,ee5e, and ions,ei52Ze,
with chargeZ reads when expanded

Thee52e
Fe~2k!1Fe~k!

2
,

Thei52e
F i~2k!2Z~bi /be!Fe~k!

11bi /be1 ia@11~bi /be!Z#
,

~20!

Thie52e
F i~k!2Z~bi /be!Fe~2k!

11bi /be2 ia@11~bi /be!Z#
,

Thii 5Ze
F i~2k!1F i~k!

2
.

This we can solve together with Eq.~18!. First we calculate
the effective field strength at the position of the electron
linear response~the Onsager result@13#!,

dE

E
E52 i

E

E

1

~2p!2E
0

`

k3dkE
21

1

d~cosu!cosu Fe~k!

5E
ke2

3T

Zq

Aq11
~21!

with k25ke
2(11Z)54p(e2ne1Z2e2ni)/T and

q5
be1Zbi

~11Z!~be1bi !
. ~22!
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For singly charged ions (Z51) the influence of the mobili-
ties drops out and we recover the result~2!.

Since this result is independent of the mobilities o
could conclude that this is a universal limiting law. Howev
we will express two doubts here. As one sees for chargeZ
.1 the result~2! is approached only in the limit where th
ion mobilities are much smaller than the electron mobiliti
bi /be→0. This means, of course, that the electrons hav
different friction with a background than the ions. In oth
words, there is an explicit symmetry breaking mechani
included by assuming such collision integrals with the ba
ground. Therefore we will obtain a different solution if w
consider no friction.

The second remark concerns the limit of the on
component system, which one can obtain by settingZ5
21. The Onsager result or hydrodynamical result with fr
tion ~21! leads to twice the Debye result~1! in this case, but
with opposite sign. In contrast, we will see in the followin
that a perfectly symmetric treatment of the species with
friction with a background will lead to a vanishing on
component limit, as it should. This again underlines the sy
metry breaking if one assumes an infinitesimal small frict
with a background.

For completeness, we want to recall the expression of
nonlinear Onsager result@18,17# that is obtained from the
limit bi /be→0 of the system~20!:

Thee1e
we~2k!1we~k!

2
50,

heiS T1 ie
k•E

k2 D 1ew i~2k!5oS bi

be
D50,

~23!

2hieS T2 ie
k•E

k2 D 2ew i~k!5oS bi

be
D50,

Thii 2Ze
w i~2k!1w̃ i~k!

2
50.

One obtains@14,18# the result forZ51,

dE52
e2ke

3~11A2!T
EFHS eE

Tke
D

52
e2ke

6T
E3H 22A21o~E!

3kT/2eE1o~1/E!2 ~24!

with

FH~a!5
3~11A2!

a2 F1

2
Aa212211

1

a
arctan~a!

2
1

a
arctanS a

Aa212
D G . ~25!

The numerical values of this result will be discussed in S
IV C.
,

,
a

-

-

-

t

-

e

c.

B. Without background

Now we reconsider the steps from Eq.~15! to Eq. ~17!
without friction with the background. We obtain the resu
that both sides of Eq.~17! vanish separately,

Thab~k!S 11 i
ea

e
aD1eaFb~2k!50,

~26!

Thab~k!S 12 i
eb

e
aD1ebFa~k!50.

Both equations have identical solutionshab , which can be
easily verified using the symmetryhab(k)5hba(2k). To-
gether with Eq.~18! we can solve forFe and the following
relaxation field is obtained instead of~24!:

dE52e2keA11Z

6T
~Z11!E FNS eE

Tke
D . ~27!

This becomes forZ51

dE

E
52

e2ke

6T
3H 21o~E!

3kT/eE1o~1/E!2 ~28!

with

FN~a!5
3

~11Z!a2 FA41~11Z!a2

1
4

A11Za
ln

2

A11Za1A41~11Z!a2G . ~29!

We see that the linear response result forZ51 is twice the
Debye result~1!. For the equally charged systemZ521,
which would coincide with a one-component plasma, no
laxation effect appears, as one would expect. In other wo
in a perfectly symmetric mathematical two-compone
plasma there is a different relaxation effect than in a sys
that distinguishes the components by a different treatmen
friction. The Onsager result~24! does not vanish for the limit
of a one-component plasmaZ521. This is due to the dif-
ferent treatment of ions and electrons there, which explic
assumes a two-component plasma. Therefore the limitZ5
21 does not work there.

This result is quite astonishing. One would expect that
limiting procedure that transforms the system~18! into ~26!
would also lead to a smooth transitions of the end resu
However, this is not the case. While the separate limit
be,i→` of Eq. ~18! leads to Eq.~26! there is no possibility
of transforming the result~21! into the linear response resu
of ~28!. This underlines that due to the~even infinitesimally
small! friction assumed in obtaining Eq.~21! there occurs a
symmetry breaking in the sense that the electrons and
are no longer symmetrically treated.

We have to keep this lesson in mind when we now a
vance and investigate the systematic treatment by quan
kinetic theory. There we will also find completely differen
results when we use asymmetric screening compared to s
metric screening. Of course, we will not assume any p
nomenological friction since kinetic theory provides for
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systematic description of all processes occurring. Here
want only to point out that the above symmetry breaking
the main reason for the confusion in literature. Following t
linear response formalism an asymmetric treatment of t
particle correlation functions is used in that the electrons
statically screened@11#. This seemingly innocent usage lea
there to an occasional agreement forZ51 with the Onsager
result ~2!.

We want to point out here another advantage of the
netic theory. The classical local equilibrium or hydrodynam
cal approximation does not lead to a mass dependence o
relaxation effect. This will be provided by kinetic theory.

III. QUANTUM KINETIC THEORY

We will formulate the kinetic theory within gauge invar
ant functions including all field effects. The most promisi
theoretical tool is the Green’s function technique@1,21–23#.
The resulting equations show some typical deviations fr
the ordinary Boltzmann equation.~i! The collision broaden-
ing consists in a smearing out of the elementary energy c
servation of scattering. This is necessary to ensure glo
energy conservation@24#. ~ii ! The intra-collisional field ef-
fect, gives additional retardation effects in the momentum
the distribution functions. This comes mainly from the gau
invariance.

One of the most important questions is the range of
plicability of these kinetic equations. Up to which fie
strengths are such modifications important and appropria
described within one-particle equations? In@25# this question
was investigated for semiconductor transport. It was fou
that for high external fields the intracollisional field effe
becomes negligible. This range is given by a characteri
time scale of field effectstF

25m\/(eE•q) which has to be
compared with the inverse collision frequency. This criteri
is a pure quantum one. It remains a question whether th
are also criteria in the classical limit. For a plasma system
will show in Sec. V that there is indeed a critical value of t
field strength which can be given by classical consideratio

A. Definitions

In order to describe correlations in highly nonequilibriu
situations, we define various correlation functions by diff
ent products of creation and annihilation operators:

G.~1,2!5^C~1!C†~2!&
~30!

G,~1,2!5^C†~2!C~1!&.

Here ^ & is the average value with the unknown statistic
nonequilibrium operator r and 1 denotes the cumulativ
variables (r1 ,s1 ,t1 , . . . ) of space, spin, time, etc. The equ
tion of motion for the correlation functions is given in th
form of the Kadanoff-Baym equation@26,27,23#

2 i ~G0
21G,2G,G0

21!

5 i ~GRS,2S,GA!2 i ~SRG,2G,SA!, ~31!

where the retarded and advanced functions are introduce
AR(1,2)52 iQ(t12t2)@A.6A,# and AA(1,2)5 iQ(t2
2t1)@A.6A,#. Here operator notation is employed, whe
e
s
e
-

re

i-
-
the

n-
al

f
e

-

ly

d

ic

re
e

s.

-

l

as

products are understood as integrations over intermed
variables~time and space! and the upper~lower! sign stands
for fermions~bosons!. The Hartree-Fock drift term reads

G0
21~118!5S i\

]

]t1
1

\2

2m
¹x1

2 2SHF~118! D d~1218! ~32!

with SHF(1,18) the Hartree-Fock self-energy.

B. Gauge invariance

In order to have an unambiguous method of construct
approximations we need to formulate our theory in a gau
invariant way. This can be done following a procedu
known from field theory@28#. This method was applied to
high field problems in@29#. With the help of the Fourier
transform of an arbitrary functionG(x,X) over the relative
coordinatesx5(r22r1 ,t22t1)5(r ,t) with the center of
mass coordinatesX5„(r21r1)/2,(t21t1)/2…5(R,t), one
can introduce a gauge invariant Fourier transform of the
ference coordinatesx,

Ḡ~k,X!5E dxG~xX!

3expF i

\E21/2

1/2

dlxmS km1
e

c
Am~X1lx! D G . ~33!

For constant electric fields, which will be of interest in th
following, one obtains a generalized Fourier transform

Ḡ~k,X!5E dx e( i /\)[xmkm1er•Et]G~x,X!,

where thex function was chosen in such a way that t
scalar potential is zero,Am5(0,2cEt). Therefore, we have
the following rules for formulating the kinetic theory gaug
invariantly. ~1! Fourier transform of the four-dimensiona
difference variablex to the canonical momentump. ~2! Shift
the momentum to kinematic momentum according top5k
2eEt. ~3! The gauge invariant functionsḠ are then given by

G~p,t !5G~k2eEt,t !5Ḡ~k,t !5Ḡ~p1eEt,t !. ~34!

We shall make use of these rules in the following sections
@30# this procedure was generalized for two-particle Gree
functions and leads to the field-dependent Bethe-Salp
equation.

C. Equation for Wigner distribution

With the help of the gauge invariant formulation of th
Green’s function~Sec. III B!, we can write the kinetic equa
tion for the Wigner functionf (p,t)5G,(p,R,t,t50) fi-
nally as@31#
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]

]t
f ~k,t !1eE“k f ~k,t !5E

0

t2t0
dtF H G.S k2

eE

2
t,t,t2

t

2D ,S,S k2
eE

2
t,2t,t2

t

2D J
1

2H G,S k2
eE

2
t,t,t2

t

2D ,S.S k2
eE

2
t,2t,t2

t

2D J
1
G . ~35!
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This kinetic equation is exact in time convolutions. This
necessary because gradient expansions in time are conn
with linearization in electric fields and consequently f
@32#. The gradient approximation in space has been app
assuming slowly varying processes in space, and we h
dropped allR dependence for simplicity. This approximatio
is discussed in the last section, Eq.~91!, and corresponds to
the limit of a weakly coupled plasma, which we employ
already in Sec. II. Please recall that due to the Coulo
gauge we do not have space inhomogeneity in the ele
field.

D. The problem of the ansatz

In order to close the kinetic equation~35!, it is necessary
to know the relation betweenG. and G,. This problem is
known as an ansatz and discussed in the literature@31,33,34#.
We will use the generalized Kadanoff and Baym ansatz@33#
where an expression is given for theG, function in terms of
expansion after various times. We can write in Wigner co
dinates

G,~p,t,t!5 f S p,t2
utu
2 DA~p,t,t !. ~36!

This generalized Kadanoff-Baym~GKB! ansatz is an exac
relation as long as the self-energy is taken in the Hartr
Fock approximation.

In order to define relation~36! we have to know the spec
tral function A. The spectral properties of the system a
described by the Dyson equation for the retarded Gree
function. For free particles and parabolic dispersions,
gauge invariant spectral function@34,35# follows as

A0~k,v!52E
0

`

dt cosS vt2
k2

2m\
t2

e2E2

24m\
t3D

5
2p

eE
Ai S k2/2m2\v

eE
D ~37!

where Ai(x) is the Airy function @36# and eE
5(\2e2E2/8m)1/3. It is instructive to verify that Eq.~37!
satisfies the frequency sum rule*dvA0(v)52p. The
interaction-free but field-dependent retarded Green’s fu
tion Go

R can be obtained from the interaction-free and fie
free Green’s function by a simple Airy transformation@37#.
This is an expression of the fact that the solutions of
Schrödinger equation with constant electric field are Ai
functions. The retarded functions can therefore be diago
ized within those eigensolutions@38,29#. It can be shown tha
Eq. ~37! remains valid even within a quasiparticle pictu
ted

d,
ve

b
ic

-

e-

’s
e

c-
-

e

l-

@37#, where we have to simply replace the free dispers
k2/2m by the quasiparticle energyek .

Together with the requirement of gauge invariance of S
III B and using the quasiparticle spectral function~37! with
quasiparticle energiesek instead ofk2/2m, the GKB ansatz
finally reads

G,~k,t,r ,t !5expH 2
i

\ S ekt1
e2E2

24m
t3D J

3 f S k2
eEutu

2
,r ,t2

utu
2 D ~38!

and analogously forG. by replacingf↔(12 f ). In order to
get more physical insight into this ansatz one transforms
the frequency representation

G,~k,v,r ,t !52E
0

`

dt f S k2
eEt

2
,t2

t

2D
3cosS vt2e~k,r ,t !

t

\
2

e2E2

24m\
t3D .

~39!

Neglecting the retardation inf one recovers the Kadanoff an
Baym ansatz@26# with the spectral function~37!. The gen-
eralized ansatz takes history into account by an additio
memory. This ansatz is superior to the Kadanoff-Baym
satz in the case of high external fields in several resp
@39#: ~i! it has the correct spectral properties,~ii ! it is gauge
invariant,~iii ! it preserves causality,~iv! the quantum kinetic
equations derived with Eq.~48! coincide with those obtained
with the density matrix technique@40,41,31#, and ~v! it re-
produces the Debye-Onsager relaxation effect@10#.

Other choices of ansatz can be appropriate for ot
physical situations. For a more detailed discussion, see@42#.

E. Kinetic equation in the dynamically screened
approximation

For Coulomb interaction it is unavoidable to consid
screening if one does not want to obtain long range~short
wave vector! divergences. To obtain an explicit form for th
kinetic equation we have to determine the self-energyS.,,.
The dynamically screened approximation is given by e
pressing the self-energy by a sum of all ring diagrams. T
resulting kinetic equation is the quantum Lenard-Bales
equation, which was derived for high fields in@37#. We give
this approximation in exact time convolutions. The se
energy is given in terms of the dynamical potentialV,
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Sa
,~k,t,t8!5E dq

~2p\!3
V aa

, ~q,t,t8!Ga
,~k2q,t,t8!, ~40!

where the dynamical potential is expressed within Coulo
potentialsVab(q)

V aa
, ~q,t,t8!5(

dc
Vad~q!L dc

, ~q,t,t8!Vca~q! ~41!

via the density-density fluctuation

L ab
, ~q,t,t8!5dabE d t̄d t̄̄~E r !21~q,t, t̄ !Laa

, ~q, t̄ , t̄̄ !

3~E a!21~q, t̄̄ ,t8!. ~42!

HereL is the free density fluctuation,

Laa
, ~q,t,t8!5E dp

~2p\!3
Ga

,~p,t,t8!Ga
.~p2q,t8,t !,

~43!

andE r /a the retarded/advanced dielectric function,

E r /a~q,t,t8!5d~ t2t8!6 iQ@6~ t2t8!#(
b

Vbb~q!

3@L.~q,t,t8!2L,~q,t,t8!#. ~44!

One can easily convince oneself that this set of equat
~40!–~44! is gauge invariant.

We can directly introduce this set of equations into t
equation for the Wigner function~35! and obtain after some
algebra for the kinetic equation

]

]T
f a1eE

]

]ka
f a5I a

in~k,t !2I a
out~k,t !. ~45!

The collision-in integral is

I a
in~k,t !52(

b
E dq

~2p\!3
Vab

2 ~q!E
0

`

dtE dv

2p

3cosF ~ek2q
a 2ek

a2v!t1
eaE•qt2

2ma
G

3 f a~k2q2eaEt,t2t!@12 f a~k2eaEt,t2t!#

3

Lbb
, S q,v,t2

1

2
t D

UES q,v,t2
1

2
t D U2 ~46!

with the free density fluctuation~43!
b

s

Lbb
, ~q,v,t !522E dp

~2p\!3E0

`

dt

3cosF ~v2ep
b1ep1q

b !t1
ebE•qt2

2mb
G

3 f bS p1q,t2
1

2
t D F12 f bS p,t2

1

2
t D G ~47!

andI out is given byf↔12 f andL,↔L.. Here we used the
ansatz~38! and have employed the approximationt6 1

2 t't
in the density fluctuation~42!, which corresponds to a grad
ent approximation in time for the density fluctuations. Sin
the center-of-mass time dependence is carried only by
distribution functions in Eq.~42!, this approximation is exac
in the quasistationary case which we investigate in the n
section. All internal time integrations remain exact. O
course, for time-dependent phenomena we have to ques
this approximation.

Equation ~46! represents the field-dependent Lena
Balescu kinetic equation@37#, which was here slightly re-
written in a form that will turn out to be very convenient fo
the later analytical integration. Other standard approxim
tions like the T-matrix @30# approximation resulting in a
field-dependent Bethe-Salpeter equation can be used.

Kinetic equation in a statically screened approximation

While we will give analytical results for the dynamica
screened approximation~46! it is useful to see the limit of
static screening too. Using the static approximation for
dielectric functionE(q,0,t) in Eq. ~46!, the kinetic equation
for statically screened Coulomb potentials in high elect
fields appears as@10,31,37#

]

]T
f a1eE

]

]ka
f a5(

b
I ab ,

~48!

I ab5
2~2sb11!

\2 E dka8dkbdkb8

~2p\!6
d~ka1kb2ka82kb8!

3$ f a8 f b8~12 f a!~12 f b!2 f af b~12 f a8!~12 f b8!%

3Vs
2~ka2ka8!E

0

`

dt cosH ~ea1eb2ea82eb8!
t

\

2
Et2

2\ S eaka

ma
1

ebkb

mb
2

eaka8

ma
2

ebkb8

mb
D J

with f b5 f b(kb2ebEt,T2t). The potential is the static De
bye potential

Vs~p!5
4peaeb\2

p21\2k2 ~49!

and the static screening lengthk is given by

k25(
c

4pec
2nc

Tc
~50!

in the equilibrium and nondegenerate limit. HereTc is the
temperature of speciesc, with chargeec , spinsc , and mass
mc .
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If we had used the conventional Kadanoff and Baym
satz~@26#! we would have obtained a factor 1/2 in differe
retardations@31#. This would lead to no relaxation effect a
all @10#. Furthermore, it is assumed that no charge or m
transfer will occur during the collision. Otherwise one wou
obtain an additional term in the cosine function proportio
to t3.

Two modifications of the usual Boltzmann collision int
gral can be deduced from Eq.~48!. ~i! A broadening of thed
distribution function of the energy conservation and an ad
tional retardation in the center-of-mass times of the distri
tion functions. This is known as collisional broadening and
a result of the finite collision duration@43#. This effect can
be observed even if no external field is applied. It is intere
ing to note that this collisional broadening ensures the c
servation of the total energy@24#. If this effect is neglected
one obtains the Boltzmann equation for the field-free ca
~ii ! The electric field modifies the broadenedd distribution
function considerably by a term proportional tot2. This
broadening vanishes for identical charge to mass ratio
colliding particles. At the same time the momentum of t
distribution function becomes retarded by the electric fie
This effect is sometimes called the intracollisional field
fect.

IV. FIELD EFFECTS ON CURRENT

We are now interested in corrections to the particle fl
and therefore obtain from Eq.~48! the balance equation fo
the momentum analog to Eq.~3!,

]

]t
^ka&2naeaE5(

b
^kaI B

ab&. ~51!

Here we search for the relaxation field~5! which will be
represented as a renormalization of the external fieldE simi-
lar to the Debye-Onsager relaxation field in the theory
electrolyte transport@14–16#. This effect is a result of the
deformation of the two-particle correlation function by a
applied electric field.

To proceed we assume some important restrictions on
distribution functions. First, we assume a nondegenerate
ation, such that Pauli blocking effects can be neglected. S
ond, to calculate the current for a quasistationary plasma
choose Maxwellian distributions analogous to Eq.~10!,

f i~p!5
ni

2si11
l i

3 expH 2
p2

2miTi
J , ~52!

with the thermal wavelengthl i
252p\2/(miTi), spinsi , and

partial temperatureTi for speciesi, which can be quite dif-
ferent, e.g., in a two-component system.

A. Statically screened result

Before we present the result for the dynamically scree
approximation we want to give the static result. The mom
tum conservation in Eq.~48! can be carried out and we ge
for the relaxation field the result
-

s

l

i-
-

s

t-
-

e.

of

.
-

,

f

he
u-
c-
e

d
-

naea

dE

E
E5(

b

2sasb

\2~2p\!9E dkdqdQ f b~Q! f a~k!

3V2~q!qE
0

`

dt cosF S 2
q2

2m\
2

k•q

ma\
1

q•Q

mb\ D t

1
E•q

2\ S eb

mb
2

ea

ma
D t2G ~53!

with the reduced massm2151/ma11/mb . The angular inte-
grations can be carried out trivially and we get

naea

dE

E
E5

E

E (
b

I 1 ,

I 15
1

\114p6E dqq3V2~q!E
0

`

dt jsS Eq

2\ F eb

mb
2

ea

ma
Gt2D

3sinS q2t

2m\ D I 2@a#I 2@b# ~54!

with js(x)5(x cosx2sinx)/x2. The two integrals over the
distribution functionsI 2 can be performed with the result

I 2@a#5
\ma~2sa11!

qt E
0

`

dkk fa~k!sinS kqt

ma\ D
52\3nap2e2q2t2Ta /2\2ma ~55!

and correspondinglyI 2@b#. We now introduce the new vari
ables

q52yAmTab,

t5
2Tabt

\
,

~56!

Tab5
1

2 S mb

ma1mb
Ta1

ma

ma1mb
TbD ,

e5
\AmE

4Tab
3/2 F eb

mb
2

ea

ma
G ,

and obtain

I 15
8nanbm2Tab

p2\4 E
0

`

dyy3 V2~2yAmTab!

3E
0

`

dt js~yt2e!sin~y2t !e2y2t2. ~57!

Using the screened Debye potential~49! we finally obtain

I 15
8nanbea

2eb
2

Tab
I 3 ,

~58!

I 35E
0

`

dz
z3

~z211!2E
0

`

dl js~xzl2!
sin~z2l z!

z
e2z2l 2.

Here we usedy5zz and l 5tz with the quantum paramete
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z25
\2k2

4mTab
~59!

and the classical field parameter

x5
e

z
5

E

2Tabk
S ma

ma1mb
eb2

mb

ma1mb
eaD . ~60!

With this form ~58! we have given an extremely useful re
resentation because the field effects, contained inx, are sepa-
rated from the quantum effects, which are contained inz.
The integral in Eq.~58! can be performed analytically in th
classical limitz→0. For the more general quantum case w
arbitrary z the linear and cubic field effects can be giv
analytically and are discussed in@17#. We will not discuss
them here.

Performing the classical limitz→0 one obtains from Eq
~58! that @18,17#

I 3c52
px

24
F~ uxu!,

~61!

F~x!52
3

x2 F32x1
1

11x
2

4

x
ln~11x!G .

Introducing the classical result Eq.~61! into Eq.~58! we find
from Eqs.~54! and ~51! the following relaxation field:

]

]t
^ka&2naeaES 11

dEa

E D5naeaJ R~E! ~62!

with

dEa

E
52

eap

6k (
b

4nbeb
2

mab

eb /mb2ea /ma

~Tb /mb1Ta /ma!2
F~ uxu! ~63!

andx from Eq. ~60!. We see that for a plasma consisting
particles with equal charge to mass ratios, no relaxation fi
appears. The link to the known Debye-Onsager relaxa
effect can be found if we assume that we have a plas
consisting of electrons (me ,ee5e) and ions with chargeei
5eZ and temperaturesTe5Ti5T. Then Eq.~63! reduces to

dEa

E
52

kea
2

6T

Z@11~me /mi !Z#

~11Z!~11me /mi !
FS eE

Tk

Z@11~me /mi !Z#

11me /mi
D

52
e2ke

6T H 1

2
1o~E!

3kT

2eE
1o~1/E!2

for Z51. ~64!

This formula together with the general form~63! is the main
result of this section. It gives the classical relaxation eff
for the statically screened approximation up to any fi
strength and represents a result beyond linear response
see that in the case of singly charged heavy ions the De
result ~1! is underestimated by a factor of 2.
ld
n
a

t

We
ye

B. Dynamically screened result

The calculation of the current with the collision integr
for dynamically screened potentials~46! can be performed
analytically as well. For the quasistationary condition we c
calculate the frequency integral in Eq.~46! analytically using
the identity@44# for the classical limito(\),

E dv

2p

H~v!

v
Im E 21~q,v!5

H~0!

2
ReS 12

1

E~q,0! D ~65!

where we setH(v)5v/Im E. We will employ only classical
screening. The quantum result for screening is more invol
and not yet analytically integrable.

Observing that for the dielectric function Eq.~44! to-
gether with Eq.~52! the following holds:

lim
v→0

v

Im E~q,v!
5

q3

Ap\3 S (b

kb
2

vb
D 21

~66!

with the partial screening lengthkb
254peb

2nb /Tb and the
partial thermal velocityvb

252Tb /mb , we obtain for the cur-
rent ~54! after similar integrations as in Sec. IV A, instead
Eq. ~58!,

I 1
dyn5

8k2ea
2eb

2nanbAmamb

ApmabTTaTb(
c

kc
2/vc

I 3
dyn,

~67!

I 3
dyn5E

0

`

dz
z2

11z2E
21

1

dxxE
0

`

dldl1e2z2( l 21 l 1
2)

3
1

z
cos@Mbz lz21Bzl2x#cos@Maz l 1z22Azl1

2x#.

Here we used the same dimensionless variables as
Sec. IV A and the quantum parameter~59!. Further, we ab-
breviatedA5eaE/kTa , B5ebE/kTb , Ma5A2mT/maTa,
Mb5A2mT/mbTb.

We wish to remark that we neglect any field depende
of the screeningE itself here. As presented in@39# a field-
dependent screening function can be derived. However,
field dependence starts quadratically and will not be con
ered in this work.

The classical limit of Eq.~67! can be performed again b
letting z→0. We obtain

I 3
dyn5

1

2
AMaI @ uAu,uBu#2~a↔b! ~68!

with the remaining three-dimensional integral

I @A,B#5E
0

`

dz
z3

z211E21

1

dx
x2

A2x21z2

3E
0

`

dle2z2l 2cos~Bzl2x!. ~69!

1. Linear response

The linear response can be read off directly from Eq.~68!
and is given byI @0,0# of Eq. ~69!. We obtain
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I 3
dyn5

p3/2

12
~MaA2MbB! ~70!

and the linear relaxation field~63! takes the form

dEdyn

E
5

4epk

3(
c

kc
2Amc /Tc

(
b

nbeb
2Amamb

TaTb

3S ea

Ta
3/2Ama

2
eb

Tb
3/2Amb

D 1o~E!. ~71!

The difference from Eq.~63! becomes more evident if w
consider again only electrons and ions with equal temp
ture,
e

ca
a-

dEdyn

E
52

ke2

6T

2Z~11Ame /miZ!

~Z1Ame /mi !
1o~E!. ~72!

The differences from Eq.~64! are obvious in the differen
mass dependence. This result overestimates the Debye r
by a factor of 2.

2. Complete classical result

Now we are able to present a complete field depende
beyond linear response. The integral~69! can be done ana
lytically, as sketched in the Appendix. The result reads
I @A,B#5
p3/2

6
I@A,B#,

I@A,B#5
3

2A3 F4A~12A11B!

B
1

A21 ln~12A2!

A11B/A
12S arctanh~1/A12B/A!2arctanh~A11B/A12B/A!

A12B/A

1
2arctanh~1/A11B/A!1arctanh~A11B/A11B/A!

A11B/A
D G . ~73!
re-

ted

y-

lli-
We obtain for Eq.~71!

dEa
dyn

E
5

4eapk

3(
c

kc
2Amc /Tc

(
b

nbeb
2Amamb

TaTb

3S ea

Ta
3/2Ama

I@A,B#2
eb

Tb
3/2Amb

I@B,A# D . ~74!

Expanding~73! in powers ofE we recover~71!. Once more
we choose the case of electrons and ions with equal temp
ture and obtain

dEdyn

E
52

ke2

6e0T

2Z~I@A,B#1Ame /miZI@B,A# !

~Z1Ame /mi !
. ~75!

For singly charged ions and big mass differences we
further simplify to

dEdyn

E
52

ke2

6T
FFeE

kTG52
e2ke

6T
3H 21o~E!

3kT

A2eE
1o~1/E!2,

~76!
ra-

n

F@x#5
3

x3 H 2@22x13~211A11x!#

A11x

1A2F2arctanhS 1

A2D 1arctanhS A11x

A2
D G

1
x21 ln~12x2!

A2 J
521o~E!.

This result will be compared with the statically screened
sult ~64! and the hydrodynamical result~24! in Sec. IV C.
Here we remark that the Debye result is twice overestima
here.

C. Thermally averaged dynamically screened result

We will now give an approximate treatment of the d
namical screening used in@8#. This approximation consists
of the replacement of the dynamical screening in the co
sion integral ~46!, which is E(v,q)22, by @1
1k2Vaa(q)/4p#21. This represents a thermal averaging@44#
of E 22, which can be proved easily with the help of Eq.~65!.
We obtain the relaxation effect of Eqs.~63! and~64! but with
a different field functionF,

Fdyn~x!52
3

x2 F22x2
2

x
ln~11x!G5H 21o~x!

3

x
1o~1/x!2.

~77!
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Therefore the relaxation effect~64! in linear response for
singly charged ions takes the form of Eq.~1! and is twice the
static screened result~64! and half of the dynamical screene
result ~76!.

As we see from Fig. 1 the different approximations le
to very different results. The statically screened result~64!
underestimates the Debye result by a factor 2, which is c
rected by the thermally averaged treatment of screening
we calculate instead the complete dynamical screened r
~72! or ~75!, we obtain twice the Debye result~1! and the
thermally averaged screened result. However, there is a c
pletely different charge dependence. We have to observe
the perfectly symmetric treatment of screening does not
produce the hydrodynamical result, which is the Onsager
sult ~2! for linear response.

D. Asymmetric dynamical screened result

We want now to proceed and ask under what assumpt
the Onsager result~2! might be reproduced. Following th
results we saw from the hierarchy we consequently hav
treat the electrons~speciesa) and ions~all other species!
asymmetrically. This we will perform in the same spirit
Onsager in that the ions have to be treated dynamically~as
before! but the electrons are screened statically.

This means we consider not the bare Coulomb poten
but a statically screened Debye potential for speciesa. The
ions ~all other species! will then form the dynamical screen
ing. In comparison with the preceding section we can p
form all steps analogously except for two modifications, E
~80! and ~83!. First we observe that instead of Eq.~66! we
have now

lim
v→0

v

Im E~q,v!
5

qvb~q21\2ke
2!

Ap\3kb
2

, ~78!

FIG. 1. The nonlinear Debye-Onsager relaxation effect vs sc
electric field for an electron and singly charged ion system. T
hydrodynamical approximation~24! leads to the Onsager result~2!
for small field strength 22A2. The statically screened result~63! or
~64! leads to half the Debye result~1!. The thermally averaged
approximation of the dynamical screening~77! leads to the Debye
result while the full dynamically screened approximation~76! leads
to twice the Debye result. Also, the hydrodynamical result~28!
without background leads to twice the Debye result.
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which leads to a replacement of the sum

(
c

kc
2

vc
→ k2

v i
~79!

in the factor of Eqs.~67! and~74!. This leads in the limit of
big mass differences to a factor in Eqs.~72! and~75!, respec-
tively, of

Z

11Z
~modification I!. ~80!

The second modification is that in Eq.~67! one has to replace

z2

11z2 → z2

11z2

z2

q1z2 5
q

q21

z2

q1z2 2
1

q21

z2

11z2 ~81!

with

q5
ka

2

k2 . ~82!

This shows that in the end results~74! and ~75! have to be
changed to

I @A,B#→A q

q21
I F A

Aq
,

B

Aq
G

2
1

q21
I @A,B# ~modification II!. ~83!

In particular, we obtain for the linear response result~72!,
where for an electron-ion plasmaq51/(Z11),

dEasy

E
5

dEdyn

E

Zq

Aq11
52

ke2

3T

Zq

Aq11
1o~E!, ~84!

which agrees with Eq.~21! if we consider that the mobilities
are very different,bi /be→0 in Eq. ~22!.

We obtain the same result from the thermally averag
result ~61!, since there appears no such function as Eq.~78!
and therefore the modification I of Eq.~80! does not apply,
but solely the modification II of Eq.~83!. We therefore ob-
tain Eq.~64! but

Fasy
dyn~x!52Fdyn~x!2A2Fdyn~A2x!5H 22A21o~x!

3

2x
1o~1/x!2

~85!

with Fdyn of Eq. ~77!. The linear response then leads exac
to the same result as from the dynamical screening~84!, i.e.,
the Onsager result with the same charge dependence.

The fact that we reproduce the classical Onsager re
with the same charge dependence can be considered as
satisfactory, the more so since we have seen how many
ferent considerations are possible. Please note that the
cial caseZ51 could lead occasionally to a seeming agre
ment between different treatments. We think that the cha
dependence discriminates among different treatments. In
2 we see that the asymmetrical screened result~75! with ~83!
approaches the hydrodynamical or Onsager result~2! rather

d
e
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well for small fields while it is too low at high fields. On th
other hand, the thermally averaged symmetrical screene
sult ~85! agrees with the hydrodynamical approximation~24!
in the low and high field limits. Why the hydrodynamic
result cannot be reproduced completely within the kine
theory still remains a puzzle. Probably the remaining diff
ence is due to the neglect of the field effect on the screen
itself @39#.

V. RANGE OF APPLICABILITY

During the derivation of the quantum kinetic equatio
gradient approximations have been assumed that restr
the spatial gradients of the system. Here we want to disc
up to what field strength this assumption is justified.

The electric field is limited to valuesx!1 for x from Eq.
~60!. This can be deduced from the expression for the
namical screened result~76!. The expression has a remo
able singularity atx51. Therefore we see a smooth curv
Nevertheless, this is the field strength where somethin
happening. For equal masses and temperatures of pla
components this condition translates into

E,
kT

e
. ~86!

We interpret the occurrence of such a singular point as me
ing that no thermal distributions pertain to the system. Th
we have to take into account nonthermal field-dependent
tributions, which have been employed to study nonlin
conductivity @45–47#.

The condition~86! allows for different physical interpre
tations. Within the picture of the screening cloud we c
rewrite Eq.~86! as

eE,m
v th

2

r D
. ~87!

FIG. 2. The different asymmetric screened approximations
the relaxation effect versus field strength. The hydrodynamical
sult ~24! is compared with the thermally averaged asymme
screened result of~85! as well as the asymmetric screened one
~83!.
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This means that a particle moving on the radius of
screening cloudr D51/k with thermal velocity v th

2 5T/m
should not be pulled away by the acting field force. We c
discuss this limit also via the energy density, which can
reached in a system by the applied field. We can reformu
the condition~86! once more to find, equivalently,

E2

4p
,nT. ~88!

This means that we have essentially nonthermal effects, t
expected if the energy density of the field becomes com
rable with the thermal energy density.

The validity criterion~86! can now be used to check th
weak space inhomogeneity that has been assumed durin
calculation. Quasiequilibrium in charged systems with ext
nal fields can be assumed only if the field current is acco
panied by an equivalent diffusion current,

j field5emEn52 j diff5eD
dn

dx
. ~89!

Using the Einstein conditionm5eD/T one gets

eE5T
1

n

dn

dx
. ~90!

Combining this elementary consideration with our conditi
~86! we obtain a limitation for space gradients

dn

d~kx!
,n, ~91!

where our treatment of field effects and local equilibrium
applicable.

VI. SUMMARY

The nonlinear relaxation field of a charged system un
the influence of high electric fields is investigated. The lo
equilibrium or hydrodynamical approach starting from t
classical BBGKY hierarchy is compared with the resu
from the quantum kinetic equations beyond linear respon

We come to the same conclusion considering the hyd
dynamical approximation or the kinetic theory that a p
fectly symmetric two-component plasma will lead to a d
ferent relaxation effect from the case where we consider
moving charge asymmetrically from the screening surrou
ings. In the hydrodynamic approach this was achieved
friction with a background; in the kinetic approach we re
ized it due to asymmetric screening. Within this asymme
treatment the limit of a one-component plasma, which wo
be to set the ion charge toZ521, leads to a nonvanishing
finite quantity. In contrast, in the perfectly symmetrical tre
ment this limit vanishes in that the relaxation field vanish
as it should. The perfectly symmetrical treatment of spec
in the system leads to twice the Debye result, different fr
the Onsager result in linear response.

Since the situation of small friction with a background
disturbance is certainly more likely to be found in natu
than the case of a mathematically pure two-compon
plasma, we consider the hydrodynamical approximat

r
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c
f
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leading to the Onsager result as more realistic. However,
should keep in mind that this Onsager result distinguis
and treats the two components differently, which results
the fact that we cannot achieve from the Onsager result
limit of a one-component plasma that it is possible to obt
from the alternatively presented pure two-compon
plasma. The difference between these two results, the
two-component one and that including friction, illustrates
symmetry breaking since there is no continuous transi
between the results if the disturbance or friction is ma
infinitesimally small. This underlines the subtlety of ha
dling two-particle correlations.

Different approximations of the kinetic approaches, on
other hand, are compared and discussed as well. The
metrical and asymmetrical treatment of species leads to
sults which cannot be transferred into each other even
infinitesimal small symmetry breaking analogously to the h
drodynamical approach. We found agreement for linear
sponse with the hydrodynamical approach even for arbitr
charge dependences. This suggests possible occas
agreement of former treatments that used singly char
ions. For higher field strengths beyond linear response, t
appear minor differences, which are probably due to the
glect of the field-dependent screening itself. The therma
averaged approximation of screening has the advantag
agreeing for low and high fields with the hydrodynamic
local equilibrium approach.
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APPENDIX: AN INTEGRAL

Here we calculate the integral~69!

I @a,b#5E
0

`

dz
z3

z211E21

1

dx
x2

a2x21z2

3E
0

`

dle2z2l 2cos~bzl2x!. ~A1!

The variable substitutionsl→p by p5Azl, z→y by z5yx,
andp→e by pAx5e leads to

I @a,b#52E
0

1

dxE
0

`

dy
y5/2

y2x211

x3

a21y2E
0

`

dee2ye2
cos~be2!

5E
0

`

dy
y1/2

a21y2 S 12
ln~11y2!

y2 D
3E

0

`

dee2ye2
cos~be2!, ~A2!
ne
s

n
e

n
t
re

n
e

e
m-
e-
or
-
-

ry
nal
d
re
e-
y
of

l

-
.
e-

-

where the trivialx integration has been carried out. The va
able substitutione→q by Aye5q andy→z by y51/z leads
to

I @a,b#5
1

a2E0

`

dqe2q2E
0

`

dy cos~bq2z!
12z2 ln~111/z2!

z211/a2
.

~A3!

Now we proceed and use an integral calculated in the n
subsection:

E
2`

`

dyeicy
12y2 ln~111/y2!

y211/a2
52pE

0

1

dxx2
e2cx

1/a22x2

1ape2c/aS 11
ln~12a2!

a2 D
~A4!

to obtain for Eq.~A3!

I @a,b#5
p3/2

4a

11@ ln~12a2!#/a2

Ab/a

1
p3/2

2a2E0

1

dx
x2

~1/a22x2!A11bx
. ~A5!

The last integral is trivial and we end up with Eq.~73!.

1. Another integral

Our task now remains to solve the integral

I 5E
2`

`

dyeicy
12y2 ln~111/y2!

y211/a2
. ~A6!

Because the complex function ln(111/y2) has a cut from
(0,i ) we perform the integration along the path as depicted
Fig. 3 and write

E
R

2r

1E
r

R

1CR1Cr1E
I
1E

II

52p i ResF12y2 ln~111/y2!

y211/a2
,i /aG

5pae2c/aS 11
ln~12a2!

a2 D . ~A7!

FIG. 3. The complex integration path for the integral~A6!.
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It is now easy to prove that in the limitr→0 andR→` the integration partsC vanish. Since the first two parts of Eq.~A7!
represent just the desired integralI we have to calculate

E
I
1E

II
5E

i 1r

r

dyeicy
12y2 ln~111/y2!

y211/a2
1E

2r

i 2r

dyeicy
12y2 ln~111/y2!12p i

y211/a2
522pE

0

1

dx
x2e2cx

1/a22x2
. ~A8!

Using Eqs.~A8! and ~A7! we obtain just Eq.~A4!.
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