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Nonlinear relaxation field in charged systems under high electric fields

K. Morawetz
LPC-ISMRA, Boulevard Marechal Juin, 14050 Caen Cedex 5, France
and GANIL, Boulevard Becquerel, 14076 Caen Cedex 5, France
(Received 22 May 2000

The influence of an external electric field on the current in charged systems is investigated. The results
beyond linear response from the classical hierarchy of density matrices are compared with the results from
guantum kinetic theory. It is found that even an infinitesimal friction with the background changes the results
in a noncontinuous way. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear
response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated
analytically and the nonlinear relaxation field is calculated. The classical linear response result known as the
Debye-Onsager relaxation effect is obtained only if asymmetric screening is assumed. When considering the
kinetic equation of one species, the other species have to be screened dynamically while the screening with the
same species itself has to be performed statically. Other different approximations are discussed and compared.

PACS numbse(s): 05.30—d, 05.20.Dd, 05.60-k, 72.20.Ht

[. INTRODUCTION if the dynamics of ionsZ=1) is considered. While the lin-
ear response theory seems to reproduce this Onsager result

High field transport has become a topic of current interest8,9,11], the kinetic theory seems more to support the Debye
in various fields of physics. In semiconductors nonlinearresult[10,17,11. The correct treatment is a matter of ongo-
transport effects are accessible due to femtosecond lasirg debate. In this paper we will give the result beyond linear
pulses and shrink devicé¢4]. In plasma physics these field response for the statically and dynamically screened approxi-
effects can be studied within such short pulse peri@s mations. We find that even an infinitesimal disturbance like
One observable of interest is the current or the electricalriction with the background leads to a noncontinuous
conductivity which gives access to properties of dense nonehange of the results and reproduces B). This can be
ideal plasma$3]. In high energy physics transport in strong considered as an example of symmetry breaking of the equa-
electric fields is of interest due to pair creatieH. In order  tions. Different approximations of kinetic theory are dis-
to describe these field effects one can start conveniently fromussed and the one that leads to the closest form to the hy-
kinetic theory. Within this approach the crucial problem is todrodynamical approximatiofOnsager resultis presented.
derive appropriate kinetic equations that include field effects The kinetic approach describes the time evolution of the
beyond linear response. one-particle distribution function within an external fietd

At low strength of the external electric field one expectsas
the linear response regime to be valid. Then the contribution
of field effects to the conductivity can be condensed into the 9 9
Debye-Onsager relaxation effd&—11], which was first de- Ef—eZE&—kfz I[f,E], €)]
rived within the theory of electrolytegl2—-16. Debye and
Huckel gave a limiting law of electrical conductivityl2], ) o
which states that the external electric fieidon a single Where the field-dependent collision integrpf,E] has to be

chargez=1 is diminished in an electrolyte solution by the Provided by different approximations. Integrating this kinetic
amountE(1+ SE/E), or equation over the momentuky one obtains the balance of

the current. For simplicity we assume that the distribution
function can be parametrized by a displaced local equilib-
peff— E( 1— ) (1) rium function with a field- and time-dependent momentum

6T f(k,t)="fo(k—p(E,t)), which is related to the curredtas
where e is the elementary charge: the electric field _ P(E,t)
strength,T the temperature of the plasma, andhe inverse JEH=nZe m S

screening radius of the screening cloud. This law is inter-
preted as a deceleration force caused by the deforme

screening cloud surrounding the charge. Later it was show'sd the charge isZe, the densityn, and the massn. The
9 ; 9 ge. Balance equation for the field- and time-dependent local mo-
by Onsagef13] that this result has to be corrected to

mentump(E,t) follows from Eq.(3) as

e2
Eeff=E<1— M) 2 %p—eZn(le @)EzR(E,t)leﬂ(E,t), (5)
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where the relaxation fieldE(E) as well as the free resistiv- 9F 9F 9F e._JF
ity R(E) follow from the field-dependent collision integral RV RV . ap— 2
- . . ' ot ar ar’ Mg v
The total conductivityoE=J is then given by a
e, —JFap
m_E , SaFab—SpFab
£ _ 1+ 0E(E)/E 5 Y
a(E)= “RE (6)

g 1 1 0F, 1 dF,,
LT [r—r'|\Ma v My gy’
The free resistivityR has been the subject of intense inves-

tigation in the literaturg3]. It is known that the Coulomb +> nee. dr”dv”(ii;- IFane
c

divergence for small wave vectors is omitted if screening is Mg I |r—y7| IV
included and the divergence at large wave vectors is omitted

by the De Broglie wavelength, i.e., by the quantum effects. L& J 1 ﬁFabc) ®
We will not consider the discussion of the free resistiRy My or' [r'—t"| v’

here but concentrate on the relaxation figélH. The free

resistivity can be obtained by the same considerations as wilvith the external fieldE. S, describes a collision integral
be outlined here. We want to point out that the relaxationwith some background which we will specify later. This hi-
field will turn out to be free of long wave divergences in the erarchy is truncated, approximating [@9]

classical limit, in contrast to the free resistivigy/

First we recall the hydrodynamical approach starting from Fab=FaFpt Jan,
the classical Bogoliubov-Born-Green-Kirkwood-Yvon 9
(BBGKY) hierarchy which results in an analytical formula Fabc=FaFbFct Fadbet FpOact Fcdabs

for the classical relaxation effect beyond linear response . . .
[18]. This result is then compared with the quantum kineticV1€"€Gan(ra: M .Va V) IS the two-particle correlation func-
approach. We give a short rederivation of the field-depende :

kinetic equations in the dynamical screened approximation V.V'thm the local equilibrium approxmathn WE SUppose a
from the Green's function technique in Sec. Ill. Two ap- stationary(for example, a local Maxwelligndistribution for

proximations, static screening as well as dynamical scree pe velocities in the one- and two-particle distribution func-

ing, are presented. In the fourth section we will derive the'ONS:
field-dependent current analytically. We present both the m
statically and dynamically screened treatments as analyticeila(r,v,t):na(r,t)<—a
results. The classical expression for the statically screened

result[17] is compared with the classical result from the
hydrodynamical approximation. The dynamical result is ther?
derived analytically also and it is shown that the hydrody-
namical result can be approached only for asymmetric =hp(r,r',t)
screening. In Sec. V we briefly discuss the physical limita-
tion of field strengths for the local equilibrium assumption

ex 2T

¥ my(v—u,)?
27T

ab(r,r,,V,V,,t): Fab_Fan

3/2
maMy,
4m?T?

2 ’ 2
and the gradient approximation. Section VI summarizes and Xex;{ _ Ma(V—Wap)”  Mp(V' —Wha) )
the Appendix gives the calculation of some involved inte- 2T 2T
grals appearing during the integration of the Lenard-Balescu (10)
equation.

Here we have introduced the local one-particle density and
the local average velocity,

Il. APPROACH BY CLASSICAL BBGKY HIERARCHY

The starting point for the classical consideration is the ”a(r-t):f dvFa(r,v.b),
BBGKY hierarchy[19,20, which reads for the one-particle (12)

distribution functionF , 1
ua=n—f dvvF(r,v,t),
a

dFa IFa e-dF, as well as the pair correlation function and the average pair

+ - .
at Vo m,  dv SaFa velocity,
Npe,€ey t?J J f
= — | dr'dv'F(r,r",v,v') — 7 hap(r,r’,t)=| dvdv’ r,r’',v,v',t),
Eb: ma &V d d ab( ’ 1V ) ar | r— r, | ( ) ab( ) gab( )

(12

1
. o . w r,r’,t)=—f dvdv'vg,(r,r',v,v',t).
and for the two-particle distribution functioh,y, asl Pap Ga(
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Further on, we suppose that the particles interact with some
background (e.g., neutral species or electrolyte solyent
through collision integral$, with the following properties:

J dvs,f,=0,

1
“bym, et "

1
f dwS,gap(r,r’,v,v' t)= mhabwab,

a'''a

whereb, is the mobility of particles of typ@. This friction

with the background serves here to couple the two-particle
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e
ba[Thab(k) 1+i Eaa +eaq>b(—k)}

€
1-i—a
e

= bb[Thab(k) + ebq)a(k)} (17

with
kcha( k)=4me,+ 2 Nc€chac(K),
C
(18

K2 (—k)=4me,+ g neechea(k)

for the two-particle correlation functioh,,. Here we use

ek-E

equations and will be considered infinitesimally small at the a= (19

end. However, as we will demonstrate, this yields a symme-
try breaking in the system, which leads to essentially differ-

ent results than if this friction is neglected.
Fourier transforming the resulting two equatidi$$ into

momentum space and assuming a homogeneous dens

n(r)=n, we arrive at the coupled equation system

4nye,e,

€a— - Ua
_TE'(Va_ ua)fa_ bama"'; T

dk iKk-(Va—Wgp)
Xf (2m)3 k2

X fa(Va_ Wap+ ua)hab(k) (14)

and
. E
iK-(Va=Vp)Gab— [€a(Va—Wap) +€,(Vp— Wba)]?gab

) 41
=— |eaeka- (Va—Uuy—Vp+up)fafy

[ dk 4me.e,—
_If(Zﬂ')s Tk2 k'(Va_Wab_Vb+Wba)gab

4ie
X(k_k)_z ncJ' chTzc[eak'(Va_ua)
c

X 1Eagcb(k) - ebk' (Vb_ ub)fbgac(k)] + Sagab+ Sbgab
(15

with
_ d 1
E=E_E nbebf drdeb_—Fb. (16)
b Iy [ra=Tp|

By multiplying the above equation system by,,v,, and

integrating over the velocities we obtain the Onsager equa-

tion [13]

KT

Let us remark here that the friction with background de-
scribed by the mobilitieb couples the two sides of E¢L7).

H‘gNe had not considered this frictio;=0, we would have
obtained the result that the left and right hand sides of Eq.
(17) vanish separately. This leads essentially to different fi-
nal expressions even for infinitely small friction. There is no
continuous transition between these two extreme cases,
pointing to a symmetry breaking between the two treatments.
Let us first discuss the case with background friction.

A. With background friction

The systen(17) for electronsg,=e€, and ionsg;= —Ze,
with chargeZ reads when expanded
b (—k)+D(k
The e 2T @)
2
@i(—k)—Z(bj /be) Pe(k)

Thei= =€ b T+ 1a[ 1+ (b, Ibg)Z]

(20
Pi(k) —Z(b; /be) Pe(—k)

Thie=—€3 b b, —ia[1+ (b, /by)Z]’

Thy; =Zeq)i(_k)2+q)i(k) .

This we can solve together with E(L8). First we calculate
the effective field strength at the position of the electron in
linear responséthe Onsager resufiL3]),

SE E 1 (= 1
—E:—|E—f k3dkf d(cosf)cosl D (k)
-1

E (2m)% )
_EKe2 Zq 21
~ 3T Jg+1 D
with k2= k3(1+Z)=4m(e’n.+2%e?n;)/T and
be+Zb
(22)

9= 1+ 2)(brby "
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For singly charged ionsZ=1) the influence of the mobili- B. Without background

ties drops out and we recover the res@t Now we reconsider the steps from Ed.5) to Eq. (17)

Since this result is independent of the mobilities oneyitqayt friction with the background. We obtain the result
could conclude that this is a universal limiting law. However, in4t poth sides of Eq17) vanish separately

we will express two doubts here. As one sees for charges

>1 the result(2) is approached only in the limit where the €,

ion mobilities are much smaller than the electron mobilities, Thap(k)| 1+i-—af+e,dy(—k)=0,

b;/b,—0. This means, of course, that the electrons have a 26)
different friction with a background than the ions. In other ep

words, there is an explicit symmetry breaking mechanism Thab(k)<1—iga +e,d,(k)=0.

included by assuming such collision integrals with the back-
ground. Therefore we will obtain a different solution if we

consider no friction.

The second remark concerns the limit of the on

component system, which one can obtain by setfig

—1. The Onsager result or hydrodynamical result with fric-
tion (21) leads to twice the Debye resul) in this case, but

with opposite sign. In contrast, we will see in the following
that a perfectly symmetric treatment of the species without
friction with a background will lead to a vanishing one-

Both equations have identical solutiohg,, which can be
easily verified using the symmetiy,,(k) =hp,(—k). To-

e'gether with Eq(18) we can solve forb, and the following

relaxation field is obtained instead (#4):

component limit, as it should. This again underlines the sym-

metry breaking if one assumes an infinitesimal small friction

with a background.

For completeness, we want to recall the expression of the
nonlinear Onsager resylii8,17] that is obtained from the

limit b;/b,—0 of the system(20):

e —K)+ @e(k) -0

Theete 5 ,

Oy

Ul_C_T

 k-E
hei T+|e? +e(pi(—k)=0( .
(23)
k-E

_hie(T_ie?)_eqﬁi(k):O( :O,

cr|_c_7

e

(—K)+oi(k
Thii_zeq’l( )2+QD|( )ZO.

One obtaing 14,18 the result forz=1,

€%k

T 3(1+2)T
ek X[z— V2+0(E)

H

eE)

Tre

24
6T 3kT/2eE+0(1/E)? @49

with

3(1++2)

CEZ

1

1
Fu(a)= 2\/az+2—1+ ;arctama)

. (25

1 ; a
— —arctan ———
a Ja?+2

SE=—¢? 1z Z+1)EF ek 2
- e Ke 6T ( ) N TKe . ( 7)
This becomes foZ =1
S5E e’ke [2+0(E)
= = 2 (28)
E 6T 3kT/eE+0(1/E)
with
Fu(@)= | ET (AT D)
N(a)—m +(1+2)a
R 2 (29
n .
V1+Za J1+Za+\4+(1+2)a?

We see that the linear response resultZe+1 is twice the
Debye result(1). For the equally charged systed= —1,
which would coincide with a one-component plasma, no re-
laxation effect appears, as one would expect. In other words,
in a perfectly symmetric mathematical two-component
plasma there is a different relaxation effect than in a system
that distinguishes the components by a different treatment of
friction. The Onsager resul24) does not vanish for the limit

of a one-component plasnz=—1. This is due to the dif-
ferent treatment of ions and electrons there, which explicitly
assumes a two-component plasma. Therefore the Emit

—1 does not work there.

This result is quite astonishing. One would expect that the
limiting procedure that transforms the syst€n8) into (26)
would also lead to a smooth transitions of the end results.
However, this is not the case. While the separate limit of
bej— of Eq. (18) leads to Eq(26) there is no possibility
of transforming the resulf21) into the linear response result
of (28). This underlines that due to tieven infinitesimally
small friction assumed in obtaining E@21) there occurs a
symmetry breaking in the sense that the electrons and ions
are no longer symmetrically treated.

We have to keep this lesson in mind when we now ad-
vance and investigate the systematic treatment by quantum
kinetic theory. There we will also find completely different
results when we use asymmetric screening compared to sym-

The numerical values of this result will be discussed in Secmetric screening. Of course, we will not assume any phe-

IV C.

nomenological friction since kinetic theory provides for a
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systematic description of all processes occurring. Here weroducts are understood as integrations over intermediate
want only to point out that the above symmetry breaking isvariables(time and spadeand the uppetlower) sign stands
the main reason for the confusion in literature. Following thefor fermions(boson$. The Hartree-Fock drift term reads
linear response formalism an asymmetric treatment of two-
particle correlation functions is used in that the electrons are S g2
statically screenefll1]. This seemingly innocent usage leads ~—1,,4/v _(:5 ¢ . " 2 _ , o
there to an occasional agreement Zor 1 with the Onsager Go (L) ={ 1A 7+ 50 Vi Zue(11) [6(1-17) (32
result(2).

We want to point out here another advantage of the ki-
netic theory. The classical local equilibrium or hydrodynami-With Z1r(1,1) the Hartree-Fock self-energy.
cal approximation does not lead to a mass dependence of the

relaxation effect. This will be provided by kinetic theory. B. Gauge invariance

lll. QUANTUM KINETIC THEORY In order to have an unambiguous method of constructing
approximations we need to formulate our theory in a gauge
We will formulate the kinetic theory within gauge invari- invariant way. This can be done following a procedure
ant functions including all field effects. The most promising known from field theory[28]. This method was applied to
theoretical tool is the Green’s function technidue21-23.  high field problems in[29]. With the help of the Fourier
The resulting equations show some typical deviations fromransform of an arbitrary functiofs(x,X) over the relative
the ordinary Boltzmann equatiofi) The collision broaden- coordinatesx=(r,—r,t,—t;)=(r,7) with the center of
ing consists in a smearing out of the elementary energy conmass coordinatesX=((r,+r;)/2,(t,+1t;)/2)=(R,t), one
servation of scattering. This is necessary to ensure globaan introduce a gauge invariant Fourier transform of the dif-
energy conservatiof24]. (ii) The intra-collisional field ef- ference coordinates,
fect, gives additional retardation effects in the momentum of
the distribution functions. This comes mainly from the gauge—
invariance. G(k’x):f dxG(xX)
One of the most important questions is the range of ap- )

plicability of these kinetic equations. Up to which field Xex;{l—fm dhx
strengths are such modifications important and appropriately ) H
described within one-particle equations? 23] this question
was investigated for semiconductor transport. It was found
that for high external fields the intracollisional field effect For constant electric fields, which will be of interest in the
becomes negligible. This range is given by a characteristi€ollowing, one obtains a generalized Fourier transform
time scale of field effectsﬁzmﬁ/(eEq) which has to be
compared with the inverse collision frequency. This criterion
is a pure quantum one. It remains a question whether there E(k’x):J dx ei/mix ki rerElGy x),
are also criteria in the classical limit. For a plasma system we
will show in Sec. V that there is indeed a critical value of the

field strength which can be given by classical consideration%here they function was chosen in such a way that the

o scalar potential is zerdA*=(0,— cEt). Therefore, we have
A. Definitions the following rules for formulating the kinetic theory gauge
In order to describe correlations in highly nonequilibrium invariantly. (1) Fourier transform of the four-dimensional
situations, we define various correlation functions by differ-difference variables to the canonical momentum (2) Shift
ent products of creation and annihilation operators: the momentum to kinematic momentum accordingptek
—eEt. (3) The gauge invariant functior@ are then given by

e
k“+EA”(X+)\X) . (33

G~ (1,2=(¥(1)¥'(2))
_ o (30 o -
GH(L,2=(¥'(2)W¥(1)). G(p,t)=G(k—eEt,t)=G(k,t)=G(p+eEt,t). (34)
Here () is the average value with the unknown statistical
nonequilibrium operatorp and 1 denotes the cumulative \ye shall make use of these rules in the following sections. In

variables ,,s;,t;, .. .) ofspace, spin, time, etc. The equa- [30] this procedure was generalized for two-particle Green’s

form of the Kadanoff-Baym equatidi26,27,23 equation.

—i(Gy'G==G=G, 1)
—I(GRS<—3<GA) —i(SRG~—G<3A), (31) C. Equation for Wigner distribution

With the help of the gauge invariant formulation of the
where the retarded and advanced functions are introduced @reen'’s functionSec. Il B), we can write the kinetic equa-
AR(1,2)=—i0(t;—t,)[A"+A~] and AA(1,2)=i0O(t, tion for the Wigner functionf(p,t)=G=(p,R,t,7=0) fi-
—t,)[A”=A~]. Here operator notation is employed, where nally as[31]
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1% t=tg
—f(k,t)+eEka(k,t)=J dr
ot 0

G>keE tT2<keE tT
—77',7', 5, 77’, 7, E )

_ eE T - eE T
-G k—?T,T,t—E V2 k—?r,—r,t—z I (35

This kinetic equation is exact in time convolutions. This is[37], where we have to simply replace the free dispersion
necessary because gradient expansions in time are connect€d®2m by the quasiparticle energgy,.

with linearization in electric fields and consequently fail Together with the requirement of gauge invariance of Sec.
[32]. The gradient approximation in space has been applied|l B and using the quasiparticle spectral functi8v) with
assuming slowly varying processes in space, and we hawguasiparticle energies, instead ofk?/2m, the GKB ansatz
dropped alR dependence for simplicity. This approximation finally reads

is discussed in the last section, Ef1), and corresponds to

the limit of a weakly coupled plasma, which we employed i e2E2

already in Sec. Il. Please recall that due to the Coulomb G<(k,r,r,t)=exp{ % €T+ m?)]

gauge we do not have space inhomogeneity in the electric

field. il eE| 7| |7] a8
S ht— 5 (38)

D. The problem of the ansatz

In order to close the kinetic equati@®5), it is necessary and analogously foG~ by replacingf« (1—f). In order to
to know the relation betwee@~ and G=. This problem is get more physical insight into this ansatz one transforms into
known as an ansatz and discussed in the literd8k3,34.  the frequency representation
We will use the generalized Kadanoff and Baym an$agi

where an expression is given for t&" function in terms of o eEr r
expansion after various times. We can write in Wigner coor- G<(k,w,r,t)=2J drf( k— T’t_ E)
dinates 0
22
< |71 X co§ wr—e(k,r,t)—— E ™
G (p.t,n=f| p.t— = JA(p,7.1). (36) Y 24mb

(39
This generalized Kadanoff-BayfGKB) ansatz is an exact
relation as long as the self-energy is taken in the HartreeNeglecting the retardation iinone recovers the Kadanoff and
Fock approximation. Baym ansat£26] with the spectral functiort37). The gen-

In order to define relatio(86) we have to know the spec- eralized ansatz takes history into account by an additional
tral function A. The spectral properties of the system arememory. This ansatz is superior to the Kadanoff-Baym an-
described by the Dyson equation for the retarded Green'satz in the case of high external fields in several respects
function. For free particles and parabolic dispersions, th¢39]: (i) it has the correct spectral properti¢i) it is gauge
gauge invariant spectral functi¢B4,35 follows as invariant, (iii ) it preserves causalityiv) the quantum kinetic

equations derived with E¢48) coincide with those obtained
o k2 Y= with the density matrix techniquet0,41,33, and(v) it re-
Ao(k,w)ZZJ dTCOS( OT= 5 T 7'3) produces the Debye-Onsager relaxation effé6i.
0 mi - 24mh . )
Other choices of ansatz can be appropriate for other

2m  (K2m-tw physical situations. For a more detailed discussion[42k
e I
€E €E
E. Kinetic equation in the dynamically screened
where Ai(x) is the Airy function [36] and eg approximation
= (h%e®E?/8m)*2. It is instructive to verify that Eq(37) For Coulomb interaction it is unavoidable to consider

satisfies the frequency sum rulfdwAy(w)=27. The screening if one does not want to obtain long raisgfeort
interaction-free but field-dependent retarded Green’s funcwave vectoy divergences. To obtain an explicit form for the
tion G(Ff can be obtained from the interaction-free and field-kinetic equation we have to determine the self-en&gy".

free Green’s function by a simple Airy transformatif87]. = The dynamically screened approximation is given by ex-
This is an expression of the fact that the solutions of thepressing the self-energy by a sum of all ring diagrams. The
Schralinger equation with constant electric field are Airy resulting kinetic equation is the quantum Lenard-Balescu
functions. The retarded functions can therefore be diagonakquation, which was derived for high fields[i87]. We give
ized within those eigensolutiof88,29. It can be shown that this approximation in exact time convolutions. The self-
Eqg. (37) remains valid even within a quasiparticle picture energy is given in terms of the dynamical poteniial
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< ’ dq < ’ < !
Skt >=f(277—m3vaa<q,t,t JGZ(k—qtt)), (40

where the dynamical potential is expressed within Coulomb

potentialsV,(q)

V§a<q,t,t')=§ Vad( DL 36t )Vea(@) (4D

via the density-density fluctuation

£§b<q,t,t'>=5abf dtdt(£) " Xa,t,HLI(q, T, 1)
X(£3) g, tt). (42)

HerelL is the free density fluctuation,

dp
(2mh)®

G (p.t,t)G; (p—a,t' 1),
(43

Lia(q,t,t’)=f

and £"2 the retarded/advanced dielectric function,

s”a<q,t,t'>=a(t—t')ti@[r(t—t')]g Vip(Q)

X[L”7(q,t,t")—L=(q,t,t")]. (44

One can easily convince oneself that this set of equations

(40)—(44) is gauge invariant.
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dp o
Lo (g, ,t I—ZJ dr
bb(0, @,1) (270
e,E-q7?
XCO{((»—EE-I—GBW)H— 2,

X f,

(47)

1-f !
—fy| pt—57

andl°"is given byf«1—f andL~«L~. Here we used the
ansatz(38) and have employed the approximatioh 3 r~t

in the density fluctuatioid2), which corresponds to a gradi-
ent approximation in time for the density fluctuations. Since
the center-of-mass time dependence is carried only by the
distribution functions in Eq(42), this approximation is exact

in the quasistationary case which we investigate in the next
section. All internal time integrations remain exact. Of
course, for time-dependent phenomena we have to question
this approximation.

Equation (46) represents the field-dependent Lenard-
Balescu kinetic equatiofi37], which was here slightly re-
written in a form that will turn out to be very convenient for
the later analytical integration. Other standard approxima-
tions like the T-matrix [30] approximation resulting in a
field-dependent Bethe-Salpeter equation can be used.

1
p+q,t— ET

Kinetic equation in a statically screened approximation

While we will give analytical results for the dynamical
screened approximatiof#6) it is useful to see the limit of
static screening too. Using the static approximation for the
dielectric function&(q,01) in Eqg. (46), the kinetic equation
for statically screened Coulomb potentials in high electric
fields appears g40,31,31

P P
- + —_ =
—fa eEakafa }b) labs

We can directly introduce this set of equations into the (48)

equation for the Wigner functio(85) and obtain after some

algebra for the kinetic equation

17

akafa=lg‘(k,t)—lg“‘(k,t). (45)

af-l—E
gt et ®

The collision-in integral is

in dq ” d
k=22, f(ZTrh)3V§b(q)fo deﬁ

e,E-qr?
2m,

XCO{(eﬁ_q— €~ o)+
Xfak—q—eErt—7)[1l-f(k—eErt—1)]

<
I-bb

1
q,w,t— ET

X 7 (46)

&

1
q,w,t—ET

with the free density fluctuatio3)

S(Ka+kp—k.—kp)

2(2s,+ 1)J‘ dkédkbdké
ab™—

h? (27h)°®
X{fa'fb’(l_fa)(l_fb)_fafb(l_fa’)(l_fb’)}

*© T
XV2(ka—kL) fo dTCO% (eatep—es— 6{))%

|

with f,=f,(k,—e,E7,T— 7). The potential is the static De-
bye potential

Er? ek, epk, ek epkp
2h \ my my m, mp,

4mre,eph?

Vs(p)= DR (49)

and the static screening lengkhis given by

4meln,

k2= T, (50)

C

in the equilibrium and nondegenerate limit. Héfrg is the
temperature of specias with chargee., spins., and mass
me.
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If we had used the conventional Kadanoff and Baym an- SE
satz([26]) we would have obtained a factor 1/2 in different n 5 gf dkdqdQ f,(Q)f (k)
retardationg31]. This would lead to no relaxation effect at b f (2 wh)
all [10]. Furthermore, it is assumed that no charge or mass q? k-q g-Q

X V2 q)qf drcos{(

€ BT

transfer will occur during the collision. Otherwise one would

obtain an additional term in the cosine function proportional

to 7°. +E~q € €a
Two modifications of the usual Boltzmann collision inte- 2h {my m,

gral can be deduced from E@8). (i) A broadening of theS

distribution function of the energy conservation and an addiwith the reduced mags™~= 1/m,+ 1/m;,. The angular inte-

tional retardation in the center-of-mass times of the distribugrations can be carried out trivially and we get

tion functions. This is known as collisional broadening and is

a result of the finite collision duratio%3]. This effect can ne 2 |

be observed even if no external field is applied. It is interest- ara E b

ing to note that this collisional broadening ensures the con-

servation of the total enerdy24]. If this effect is neglected

T2uh mgh o moh) "

72} (53

-1

one obtains the Boltzmann equation for the field-free case. 1;=——— dag®V?(q) dT]S — = — |7
(i) The electric field modifies the broadenéddistribution hAm My Mg
function considerably by a term proportional t3. This 27

broadening vanishes for identical charge to mass ratios of xsin 5=l a]l[b] (54)
colliding particles. At the same time the momentum of the

distribution function becomes retarded by the electric fieldyith js(x) = (x cosx—sinx)/x2. The two integrals over the
This effect is sometimes called the intracollisional field ef-gjstribution functiond , can be performed with the result

fect.

hma(25a 1) kgr
IJla]J=—— dkk fa(k)sin
IV. FIELD EFFECTS ON CURRENT maft
3 2

We are now interested in corrections to the particle flux, :2ﬁ3na77 e 07 Tal2my (55
and therefore obtain from E@48) the balance equation for _ _ _
the momentum analog to E(B) and correspondingly,[ b]. We now introduce the new vari-

’ ables
J =
(ke N E=3 (kal3). (51 972V K Tan
b
. 2TabT

Here we search for the relaxation fie{8) which will be fi
represented as a renormalization of the external fesimi- (56)
lar to the Debye-Onsager relaxation field in the theory of T :} m T 4 my -
electrolyte transporf14—14. This effect is a result of the T2 \mytmy & mutmg P
deformation of the two-particle correlation function by an
applied electric field. . o ﬁ\/;E e, €,

To proceed we assume some important restrictions on the 72 | m T ml”
distribution functions. First, we assume a nondegenerate situ- 4Tgp LMo a
ation, such that Pauli blocking effects can be neglected. Sec- d obtai
ond, to calculate the current for a quasistationary plasma w@nd obtain
choose Maxwellian distributions analogous to EL), 8. 2T

bM” Tab
— f dyy? V2(2y\uTap)
n, . p2 - w’h4
fi(p)= Ayexp —5—— 1, 52 .
2si+1 - 2mT, X f dtjs(yt2e)siny2t)e V. (57)
0

with the thermal wavelength?=27%2/(m;T;), spins;, and
partial temperaturd; for species, which can be quite dif-
ferent, e.g., in a two-component system.

Using the screened Debye poteniid®) we finally obtain

8n,n,ee?

_ T
A. Statically screened result 58
. o i 72

Before we present the result for the dynamically screened | :f dz z J dl .S(lez)Sln(Z 1) o722
approximation we want to give the static result. The momen- 37 )y T(22+1)2), J 14
tum conservation in Eq48) can be carried out and we get
for the relaxation field the result Here we used=z¢ andl=t{ with the quantum parameter
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522 B. Dynamically screened result

2= 59
2iT ®9

The calculation of the current with the collision integral
for dynamically screened potentiald6) can be performed
and the classical field parameter analytically as well. For the quasistationary condition we can
calculate the frequency integral in E46) analytically using
the identity[44] for the classical limito(%),

dow H(w) -1 _H© 6{ = )
fﬁT'mg (q,w)= 2 R 1_5(%0) (69

E my, m

e
{ 2Tk \mgt+m, €~ m,+m, eﬁ) - (60

X=

With this form (58) we have given an extremely useful rep-
resentation because the field effects, contained &e sepa-  \yhere we seH(w)= w/Im & We will employ only classical

rated from the quantum effects, which are contained.in  screening. The quantum result for screening is more involved
The integral in Eq(58) can be performed analytically in the and not yet analytically integrable.

classical limit/—0. For the more general quantum case with  opserving that for the dielectric function E¢44) to-
arbitrary £ the linear and cubic field effects can be given gether with Eq(52) the following holds:
analytically and are discussed [ih7]. We will not discuss

them here. o q° Kﬁ -1
Performing the classical limi§—0 one obtains from Eq. lim = 3 — (66)
(58) that[18,17] wooMEd@) 743\ T vy

- with the partial screening lengthi=4me?n, /T, and the
l3e=— =-F(|x), partial thermal veIocity;ﬁzZTb/mb, we obtain for the cur-

rent(54) after similar integrations as in Sec. IV A, instead of
(61)  Eq.(58),

: 8x2een, n,m,my

| Y=
VT apT TaT K2y
Introducing the classical result E@1) into Eq.(58) we find fapt Ta bEc: ¢re

from Eqgs.(54) and (51) the following relaxation field: ) (67

o) 7 1 o 2.2 2
dyn_ —z°(1°+17)
15 fo dz—1+22J71dxxJO didl,e 1

1 2 2 2 2
chos{Mbglz +Bzl*x]cog M ;{12 —AzIix].

F(0= = | 3=x+ ——— Tin(1+
()= 2T Tex x N(L+x)

I dyn
3

d
E<ka> - r]aeaE

SE,
1+ ? = naeaJ R(E) (62)

with

Here we used the same dimensionless variables as in
OB,  egm anpel e /mp—e,/m, . 63 Sec. IV A and the quantum parameté&®). Further, we ab-
E T ok % Tyt T.imy? (IX) (63 previated A=e,E/xT,, B=e,E/xTy, My=2uTim,T,,

M b— \IZ/LT/mbTb.
andx from Eq. (60). We see that for a plasma consisting of We wish to remark that we neglect any field dependence

particles with equal charge to mass ratios, no relaxation fielr‘j)f the screening’ itself here. As presented {89 a field-

appears. The link to the known Debye-Onsager relaxatio ependent screening function can be de”"e_d- However, this
effect can be found if we assume that we have a plasm eld dependence starts quadratically and will not be consid-

L : : d in this work.
consisting of electronsnf,,e.=¢€) and ions with charge; ere . . .
=eZ and temperatureg,=T;=T. Then Eq.(63) reduces to '_I'he classical limit Qf Eq(67) can be performed again by
letting {—0. We obtain

OB, «€% Z[1+(me/m)Z] _[eE Z[1+(me/m)Z] ayn_ 1
E 6T (1+2)(1+mo/my) | Tx 1+me/m 137"=5 AM.I[|A],[B|]~ (a=b) (68)
1
) §+0(E) with the remaining three-dimensional integral
€7 Ke
== &7 3.t ) for Z=1. (64) A B]—J'wdz 3 fl N 2
56 TO(1/E) T o T2+ o AN+ 22
<22
This formula together with the general for(®3) is the main x fo dle*""cogBzPx). (69)

result of this section. It gives the classical relaxation effect
for the statically screened approximation up to any field
strength and represents a result beyond linear response. We
see that in the case of singly charged heavy ions the Debye The linear response can be read off directly from &8)
result(1) is underestimated by a factor of 2. and is given bylI[0,0] of Eq. (69). We obtain

1. Linear response
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3/2

™ SEM  ke® 2Z(1+\me/m;Z
197" (A= M,B) (70 _ K 2ZAANMIMZ) gy (72
E 6T (z+/mJ/m)
and the linear relaxation fiel@3) takes the form
SEyN demrk m,m, The differences from Eq(64) are obvious in the different
E E nbef, T.T, mass dependence. This result overestimates the Debye result
a

by a factor of 2.

3> k2\m T, "
Cc

2. Complete classical result

+0o(E). (77

ea
X
(Tg’2 \/m—a T3/2 \/— _
Now we are able to present a complete field dependence

The difference from Eq(63) becomes more evident if we beyond linear response. The integf@9) can be done ana-
consider again only electrons and ions with equal temperaytically, as sketched in the Appendix. The result reads
ture,

732
I[A,B]= TZ[A, B],

4A(1—-\1+B) A2+In(1—A2)+2(arctanl(ll/\/l—B/A)—arctanm\/lJrB/\/l—B/A)

I[AB]=
[A.B]= 2A3 B J1+B/A 1-BIA
—arctankil/y/1+B/A)+arctanliy1+B/\1+B/A)
N (73
V1+B/A
|
We obtain for Eq(71) 2~ 2x+3(—1+V11X)]
Ax= 5
1+x

©aret }é J1+x
arctan N

SEIN 4e, Tk m,m
Ea _ a 2 nbeg TaTb _|_\/E
3> k2ym /T, " a’b
c +x2+In(1—x2)]

2

=2+0(E).

1
—arctan ﬁ

————7[A,B]— —>—7[B,A]|. (74

3/2\/_ 3/2\/_

This result will be compared with the statically screened re-

Expanding(73) in powers ofE we recover(71). Once more ~ Sult (64) and the hydrodynamical resul24) in Sec. IV C.
we choose the case of electrons and ions with equal temperHere we remark that the Debye result is twice overestimated

ture and obtain here.

C. Thermally averaged dynamically screened result

dyn 2 [~ We will now give an approximate treatment of the dy-
OB __ K€ 2Z(ZIABI+ me/miZI[B,A]). (750  namical screenir?g used [Ig]p This approximation consistg
E GeoT (Z+yme/my) of the replacement of the dynamical screening in the colli-
sion integral (46), which is &w,q) % by [1
+ k?V,,(q)/47] L. This represents a thermal averag[ng]
For singly charged ions and big mass differences we cagf £-2 which can be proved easily with the help of E65).
further simplify to We obtain the relaxation effect of Eq$3) and(64) but with
a different field functiorf,

2+0(E)
SE eE] e 2+0(x)
£ = =— =7 x| 3T (76 Fog=— |2 2 (14| =1 3 7
E 6T 6T +0(1/E)?, (X)__F TXT I = —+0(1/x)2. 79
\/feE X
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' ' ' ' ' ' ' ' ] which leads to a replacement of the sum

. —— dyn. screened K2 2
17 ——— hydrodyn. with background 1 Ke K-
Y —-—- statical screened 2 Ve - v (79)
15 therm. av. dyn. screened ]
= Ve i . . . ..
o, hygrodin-Withodt Hackgreund ] in the factor of Eqs(67) and(74). This leads in the limit of
}’4_’ : big mass differences to a factor in E¢82) and(75), respec-
z 11 tively, of
T 0
S o009t
w —— (modification ). 0
@ o7 f 1+7 ( ) (80)

2
o

The second modification is that in E&7) one has to replace

S
(&)

2 2 2

z z Zz q 7 1 2
1+22 1+22q+22 q-1q+22 q-11+2

(81)

0.1

FIG. 1. The nonlinear Debye-Onsager relaxation effect vs scale<\thh
electric field for an electron and singly charged ion system. The
hydrodynamical approximatiot®4) leads to the Onsager res(®) q=—. (82
for small field strength 2 2. The statically screened res(#8) or
(64) leads to half the Debye resull). The thermally averaged

approximation of the dynamical screenifigy) leads to the Debye This shows that in the end resul84) and (75) have to be

result while the full dynamically screened approximat{@6) leads changed to
to twice the Debye result. Also, the hydrodynamical re$aB)
without background leads to twice the Debye result. T 9 |A B
[A,B]— — 1I NG
Therefore the relaxation effe¢64) in linear response for a va
singly charged ions takes the form of Ed) and is twice the
static screened resu4) and half of the dynamical screened - q—_lz [A,B] (modificationI). (83)

result(76).

As we see from Fig. 1 the different approximations leadin particular, we obtain for the linear response resag),
to very different results. The statically screened re¢6#  \yhere for an electron-ion plasntg=1/(Z+1),
underestimates the Debye result by a factor 2, which is cor-

rected by the thermally averaged treatment of screening. If SEY  SEWN  7zq ke?  Zq
we calculate instead the complete dynamical screened result E T E =~ 37 ———+o0(E), (84
(72) or (75), we obtain twice the Debye result) and the Vo+1 Vo+1

thermally averaged screened result. However, there is a com-, . : . . i
pletely different charge dependence. We have to observe thé\’t::c\?e;g:ﬁ;:rg:{‘blzlng (')f ;lr\:eEc(:qorgglz(;er that the mobilities
. . A | e . .

the perfectly symmetric treatment of screening does not re We obtain the same result from the thermally averaged

glrj?td(;gefc}:]ﬁnzgr?gg;:rzggal result, which is the Onsager rer_esult(61), since there appears no such function as (£8)

and therefore the modification | of E€B0) does not apply,
but solely the modification Il of Eq83). We therefore ob-
tain Eq.(64) but

We want now to proceed and ask under what assumptions
the Onsager resul2) might be reproduced. Following the 2—\2+ o(x)
results we saw from the hierarchy we consequently have to-dyn .\ _ »dyn oy _ dyn —
treat the electrongspeciesa) and ions(all other species OFaSy(X)_ZF 00 = V2F(/2x)= i+0(1/x)2 ®9
asymmetrically. This we will perform in the same spirit as 2X
Onsager in that the ions have to be treated dynamicably
before but the electrons are screened statically.

This means we consider not the bare Coulomb potenti

but a statically screened Debye potential for speaieshe The fact that we reproduce the classical Onsager result

lons (all other spec@swﬂl then form Fhe dyna}mlcal SCTeEN- ith the same charge dependence can be considered as very
ing. In comparison with the preceding section we can per-

- satisfactory, the more so since we have seen how many dif-
form all steps analogously except for two modifications, Eqs

(80) and (83). First we observe that instead of E§6) we ferent considerations are possible. Please note that the spe-
have now ' cial caseZ=1 could lead occasionally to a seeming agree-

ment between different treatments. We think that the charge
dependence discriminates among different treatments. In Fig.
lim ' (78) 2 we see that the asymmetrical screened rég8jtwith (83)
w—0lME(Q, ) \/;hg’xﬁ approaches the hydrodynamical or Onsager reultather

D. Asymmetric dynamical screened result

with F®" of Eq. (77). The linear response then leads exactly
tlo the same result as from the dynamical screef@y, i.e.,
%he Onsager result with the same charge dependence.

®  qQuy(q°+7i%Kd)
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This means that a particle moving on the radius of the

0.2

\s, ' ‘9n-asymmalricalscroenad screening cloudrp=1/«k with thermal velocityv=T/m
\ '\ ——— hydrodyn. with background hould b lled by th . field W
\\ —— thermod. av. asymmetrical screened S. ou nOt. e.p.u € away y the acting 'e_ orc.e. € can
discuss this limit also via the energy density, which can be
o ; reached in a system by the applied field. We can reformulate
oar the condition(86) once more to find, equivalently,
[)
3
5 E?
8 —<nT. (89
g 4
w
m
Z=]

This means that we have essentially nonthermal effects, to be
expected if the energy density of the field becomes compa-
rable with the thermal energy density.

The validity criterion(86) can now be used to check the
weak space inhomogeneity that has been assumed during our
00 T T 20 a0 40 50 69 70 80 93 oo calcylatlon. Quasiequilibrium in c;harge_d systems Wlth exter-
eE/xT nal fields can be assumed only if the field current is accom-

FIG. 2. The different asymmetric screened approximations forpanIEd by an equivalent diffusion current,
the relaxation effect versus field strength. The hydrodynamical re-

sult (24) is compared with the thermally averaged asymmetric jfiels=enEN= _jdiff:eD@- (89)
screened result of85) as well as the asymmetric screened one of dx
(83). . . . "
Using the Einstein conditiop=eD/T one gets

well for small fields while it is too low at high fields. On the 1d

. n
other hand, the thermally averaged symmetrical screened re- eE=T- —. (90)
sult (85) agrees with the hydrodynamical approximati@d) n dx

in the low and high field limits. Why the hydrodynamical - . . . . .
result cannot be reproduced completely within the kineticcombmmg this elementary consideration with our condition

theory still remains a puzzle. Probably the remaining differ-(86) we obtain a limitation for space gradients
ence is due to the neglect of the field effect on the screening dan
itself [39].

d(kx)

<n, (92)

V. RANGE OF APPLICABILITY where our treatment of field effects and local equilibrium is

. L o . __applicable.
During the derivation of the quantum kinetic equations PP

gradient approximations have been assumed that restricted
the spatial gradients of the system. Here we want to discuss

up to what field strength this assumption is justified. The nonlinear relaxation field of a charged system under
The electric field is limited to values<1 for x from Eq.  the influence of high electric fields is investigated. The local
(60). This can be deduced from the expression for the dyequilibrium or hydrodynamical approach starting from the
namical screened result6). The expression has a remov- classical BBGKY hierarchy is compared with the results
able singularity at=1. Therefore we see a smooth curve. from the quantum kinetic equations beyond linear response.
Nevertheless, this is the field strength where something is We come to the same conclusion considering the hydro-
happening. For equal masses and temperatures of plasragnamical approximation or the kinetic theory that a per-
components this condition translates into fectly symmetric two-component plasma will lead to a dif-
ferent relaxation effect from the case where we consider the
kT moving charge asymmetrically from the screening surround-
E<?' (86) ings. In the hydrodynamic approach this was achieved by
friction with a background; in the kinetic approach we real-

We interpret the occurrence of such a singular point as meariz€d it due to asymmetric screening. Within this asymmetric
ing that no thermal distributions pertain to the system. Thudréatment the limit of a one-component plasma, which would
we have to take into account nonthermal field-dependent did2€ t© set the ion charge ©=—1, leads to a nonvanishing
tributions, which have been employed to study nonlineafinite quantity. In contrast, in the perfectly symmetrical treat-
conductivity [45—47. ment this limit vanishes in that the r_elaxatlon field vanlshe_s,
The condition(86) allows for different physical interpre- a5 it should. The perfectly symmetrical treatment of species
tations. Within the picture of the screening cloud we cani the system Ieads.to twice the Debye result, different from
rewrite Eq.(86) as the Qnsager r_esuIF in linear response.
Since the situation of small friction with a background or
2 disturbance is certainly more likely to be found in nature
eE<mv_th_ (87) than the case of a mathematically pure two-component
'p plasma, we consider the hydrodynamical approximation

VI. SUMMARY
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leading to the Onsager result as more realistic. However, one
should keep in mind that this Onsager result distinguishes
and treats the two components differently, which results in
the fact that we cannot achieve from the Onsager result the
limit of a one-component plasma that it is possible to obtain
from the alternatively presented pure two-component
plasma. The difference between these two results, the pure R I - R
two-component one and that including friction, illustrates a
symmetry breaking since there is no continuous transition
between the results if the disturbance or friction is made
infinitesimally small. This underlines the subtlety of han- o ) ) )
dling two-particle correlations. where the trivialx integration has been carried out. The vari-
Different approximations of the kinetic approaches, on theable substitutiore—q by Jye=q andy—z by y=1/z leads

other hand, are compared and discussed as well. The syrif

metrical and asymmetrical treatment of species leads to re-

FIG. 3. The complex integration path for the integfab).

sults which cannot be transferred into each other even for 1 (= 2 [ 5 1-2%In(1+1/2%)
infinitesimal small symmetry breaking analogously to the hy-[@,b]= ;fo dge fo dycogbqz) 21l
drodynamical approach. We found agreement for linear re- (A3)

sponse with the hydrodynamical approach even for arbitrary
charge dependences. This suggests possible occasiongl,, we proceed and use an integral calculated in the next
agreement of former treatments that used singly charged,psection:

ions. For higher field strengths beyond linear response, there
appear minor differences, which are probably due to the ne-

© _ 2 2 —cX
glect of the field-dependent screening itself. The thermally dyécyl y~In(1+1ly7) :zq-rjldxxze—
averaged approximation of screening has the advantage of--« y2+1/a? 0 1/a%—x2
agreeing for low and high fields with the hydrodynamical In(1—a?)
i n(l—a
local equilibrium approach. +awec/a( 1+ =
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T 1 X
+—| dx . (A5)
2 2_\2
APPENDIX: AN INTEGRAL 2a“Jo (1/a—x)J1+bx
Here we calculate the integré$9) The last integral is trivial and we end up with E@J).
@ 723 r X2 1. Another integral
Ila,b]= fo dz 27 1f_1dxa2x2+ z° Our task now remains to solve the integral
* » _\2 2
xf dle~?cogbzPx). (A1) |:f dygey =Y INF M) (A6)
0 _ 2 2
% y“+1/a

The variable substitutions—p by p=/zl, z—y by z=yx, Because the complex function In¢lL/y?) has a cut from
andp—e by pyx=e leads to (0,i) we perform the integration along the path as depicted in

Fig. 3 and write

1 (e y*?2 x3 (= y& & —r (R
I[a,b =2f dxj d ——f dee Y®cogb J J f J
[a.b] o Jo yy2x2+1 a*+y*Jo S0 R * r+CR+Cr+ |+ 0
= yP In(1+y?) 1—y2In(1+ 142
:fod a2+y2(1_ % “emRe y2+(1/ZIY)’”a
y a
o A2
xfo deefyezcos(bez), (A2) =mae °2 1+In(1a—2a) (A7)
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It is now easy to prove that in the limit—0 andR— <« the integration part€ vanish. Since the first two parts of EGA7)

represent just the desired integkale have to calculate

r 1-y?In(1+1N2
[ g2t
oJdn Jidr y°+1/a

—r

Using Egs.(A8) and (A7) we obtain just Eq(A4).

i-r 1-y2In(1+1N?) +2mi 1
J‘ dyeey y<In( o) +2m :_wa

d Xze* CX
X—————.
0 1/a?—x2

A8
y2+1/a? (48)

[1] H. Haug and A.P. Jauh@uantum Kinetics in Transport and
Optics of SemiconductoSpringer, Berlin, 1996

[2] W. Theobald, R. H@ner, C. Wiker, and R. Sauerbrey, Phys.
Rev. Lett.77, 298 (1996.

[3] W.D. Kraeft, D. Kremp, W. Ebeling, and G. Rke, Quantum
Statistics of Charged Particle Systefdkademie Verlag, Ber-
lin, 1986).

[4] Y. Kluger, J.M. Eisenberg, and B. Svetitsky, Phys. Revi®)
4659(1992. ]

[5] B.B. Kadomtsev, Zh. Ksp. Teor. Fiz.33, 151 (1958 [Sov.
Phys. JETR33, 117 (1958)]. )

[6] Y.L. Klimontovich and W. Ebeling, Zh. Esp. Teor. Fiz.63,
905 (1972 [Sov. Phys. JETR6, 476 (1973].

[7] W. Ebeling, Ann. Phys(Leipzig) 33, 5 (1976

[8] W. Ebeling and G. Rpke, Ann. Phys.(Leipzig) 36, 429
(1979.

[9] G. Ripke, Phys. Rev. /88, 3001(1988.

[10] K. Morawetz and D. Kremp, Phys. Lett. A73 317 (1993.

[11] A. Esser and G. Rake, Phys. Rev. B8, 2446(1998.

[12] P. Debye and E. Hikel, Phys. Z.15, 305 (1923.

[13] L. Onsager, Phys. Z8, 277 (1927).

[14] H. FalkenhagenElektrolyte(S. Hirzel Verlag, Leipzig, 1953

[15] H. Falkenhagen, W. Ebeling, and W.D. Kraeft,lonic Inter-
action, edited by S. PetruccfAcademic Press, New York,
1971, Chap. 1, p. 1.

[16] D. Kremp, D. Kraeft, and W. Ebeling, Ann. Phy&.eipzig)
18, 246(1966.

[17] K. Morawetz, Contrib. Plasma Phy37, 195(1997); 37, 4E)
(1997.

[18] J. Ortner, Phys. Rev. B6, 6193(1997.

[19] N.N. Bogoliubov, J. Phys(Moscow) 10, 256 (1946; Trans-
lated inStudies in Statistical Mechanic¥ol. 1, edited by D.
de Boer and G.E. UhlenbeciNorth-Holland, Amsterdam,
1962. )

[20] Y.L. Klimontovich and W. Ebeling, Zh. Esp. Teor. Fiz43,
146 (1962 [Sov. Phys. JETRS6, 104 (1963)].

[21] P. Danielewicz, Ann. PhygN.Y.) 152, 239(1984.

[22] V. Spicka and P. LipavskyPhys. Rev. Lett73, 3439(1994.

[23] V. Spicka and P. LipavskyPhys. Rev. B52, 14 615(1995.

[24] K. Morawetz, Phys. Lett. AL99 241 (1995.

[25] P. Lipavsky F.S. Khan, F. Abdolsalami, and J.W. Wilkins,
Phys. Rev. B43, 4885(199)).

[26] L.P. Kadanoff and G. BaymQuantum Statistical Mechanics
(Benjamin, New York, 196R

[27] L.V. Keldysh, Zh. EKksp. Teor. Fiz.47, 1515 (1964 [Sov.
Phys. JETR20, 1018(1965]

[28] C. ltzykson and J.B. ZubeQuantum Field TheoryMcGraw-
Hill, New York, 1990.

[29] R. Bertoncini and A.P. Jauho, Phys. Rev4R& 3655(1991).

[30] K. Morawetz and G. Roke, Z. Phys. A355 287(1996.

[31] A.P. Jauho and J.W. Wilkins, Phys. Rev.2B, 1919(1984).

[32] G.D. Mahan, Phys. Refl45, 251 (1987.

[33] P. LipavsKy V. Spicka, and B. Velicky Phys. Rev. B34, 6933
(1986.

[34] A.P. Jauho, irQuantum Transport in Semiconductpeslited
by D. Ferry and C. JacobofiPlenum Press, New York, 1991
Chap. 7.

[35] F.S. Khan, J.H. Davies, and J.W. Wilkins, Phys. Rev3®
2578(1987).

[36] M. Abramowitz and I.A. StegurRocketbook of Mathematical
Functions(Verlag Harri Deutsch, Frankfurt/Main, 1984

[37] K. Morawetz, Phys. Rev. B0, 4625(1994).

[38] R. Bertoncini, A.M. Kriman, and D.K. Ferry, Phys. Rev.4B,
3371(1989.

[39] K. Morawetz and A.P. Jauho, Phys. Rev58 474(1994).

[40] I.B. Levinson, Fiz. Tverd. TeldLeningrad 6, 2113 (1965
[Sov. Phys. Solid Staté, 1665(1965].

[41] I.B. Levinson, Zh. Ksp. Teor. Fiz57, 660(1969 [Sov. Phys.
JETP30, 362(1970]. 5

[42] K. Morawetz, P. Lipavskyand V. $icka, Phys. Rev. Bto be
published (e-print cond-mat/0005287

[43] S.K. Sarker, J.H. Davies, F.S. Khan, and J.W. Wilkins, Phys.
Rev. B33, 7263(1986.

[44] Y.L. Klimontovich, Kinetic Theory of Nonideal Gases and
Nonideal PlasmagAcademic Press, New York, 1975

[45] K. Morawetz, M. Schlanges, and D. Kremp, Phys. Revi8&:
2980(1993.

[46] D. Kremp, K. Morawetz, M. Schlanges, and V. Rietz, Phys.
Rev. E47, 635(1993.

[47] K. Morawetz and D. Kremp, Phys. PlasmBs225 (1994).



